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Stochastic comparisons for stochastic heat equation*
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Abstract

We establish the stochastic comparison principles, including moment comparison
principle as a special case, for solutions to the following nonlinear stochastic heat
equation on Rd (

∂

∂t
− 1

2
∆

)
u(t, x) = ρ(u(t, x)) Ṁ(t, x),

where Ṁ is a spatially homogeneous Gaussian noise that is white in time and colored
in space, and ρ is a Lipschitz continuous function that vanishes at zero. These
results are obtained for rough initial data and under Dalang’s condition, namely,∫
Rd

(1 + |ξ|2)−1f̂(dξ) < ∞, where f̂ is the spectral measure of the noise. We first
show that the nonlinear stochastic heat equation can be approximated by systems of
interacting diffusions (SDEs) and then, using those approximations, we establish the
comparison principles by comparing either the diffusion coefficient ρ or the correlation
function of the noise f . As corollaries, we obtain Slepian’s inequality for SPDEs and
SDEs.
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1 Introduction

In this paper, we study the stochastic comparison principle (see Definition 1.4)
including moment comparison principle for the solutions to the following stochastic heat
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Stochastic comparisons for SHE

equation (SHE)
(
∂

∂t
− 1

2
∆

)
u(t, x) = ρ(u(t, x)) Ṁ(t, x), x ∈ Rd, t > 0,

u(0, ·) = µ(·).
(1.1)

In this equation, ρ is assumed to be a globally Lipschitz continuous function with

ρ(0) = 0. (1.2)

The linear case, i.e., ρ(u) = λu, is called the parabolic Anderson model (PAM) [3]. The
noise Ṁ is a Gaussian noise that is white in time and homogeneously colored in space.
Informally,

E
[
Ṁ(t, x)Ṁ(s, y)

]
= δ0(t− s)f(x− y),

where δ0 is the Dirac delta measure with unit mass at zero and f is a nontrivial “correla-
tion function/measure” i.e., a nonnegative and nonnegative definite function/measure
that is not identically zero 1. The Fourier transform of f , which is again a nonnegative
and nonnegative definite measure and is usually called the spectral measure, is denoted
by f̂

f̂(ξ) = Ff(ξ) =

∫
Rd

exp (−i ξ · x) f(x)dx.

The SPDE (1.1) is understood in its integral form, i.e., the mild solution,

u(t, x) =

∫
Rd
G(t, x− y)µ(dy) +

∫ t

0

∫
Rd
G(t− s, x− y)ρ(u(s, y))M(ds,dy), (1.3)

where G(t, x) is the heat kernel function

G(t, x) := (2πt)−d/2 exp
(
−|x|2/(2t)

)
, (1.4)

and the stochastic integral is in the sense of Walsh [11, 29].
We are interested in the stochastic comparison principles for (1.1), which should not

be confused with the sample path comparison principle [5, 7, 24, 25] where one compare
solutions for the same equation but with different and comparable initial conditions. We
consider under either one of the following two scenarios:

(S-1) Let u1 and u2 be two solutions to (1.1) with the same (nonnegative) initial data
and the same noise but with different diffusion coefficients, namely, ρ1 and ρ2,
respectively. Assume that

either ρ1(x) ≥ ρ2(x) ≥ 0 or ρ1(x) ≤ ρ2(x) ≤ 0 for all x ≥ 0.

(S-2) Let u1 and u2 be two solutions to (1.1) with the same (nonnegative) initial data
and the same diffusion coefficient, but with different correlation functions, namely,
f1 and f2, respectively. Assume that

f1 ≥ f2 (i.e., f1 − f2 is a nonnegative measure).

We plan to work under weakest possible conditions on (1.1), which include rough initial
data and Dalang’s condition on f . Let us explain these two conditions in more details.

1In the following, the terminology “correlation function” should be understood in the generalized sense,
i.e., it refers a function – the Radon–Nikodym derivative – when f is absolutely continuous with respect to the
Lebesgue measure; otherwise, it refers to a genuine measure.
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Stochastic comparisons for SHE

We first note that by the Jordan decomposition, any signed Borel measure µ can be
decomposed as µ = µ+ − µ− where µ± are two non-negative and mutually singular Borel
measures. Denote |µ| := µ+ + µ−. The rough initial data refers to any signed Borel
measure µ such that ∫

Rd
e−a|x|

2

|µ|(dx) < +∞ , for all a > 0 , (1.5)

where |x| =
√
x21 + · · ·+ x2d denotes the Euclidean norm. It is easy to see that the

condition (1.5) is equivalent to the condition that the solution to the homogeneous
equation – J0(t, x) defined in (2.1) below – exists for all t > 0 and x ∈ Rd. Existence and
uniqueness of a random field solution for rough initial conditions are recently established
in [6] (see also [5] and [17]) under Dalang’s condition [11], i.e.,

Υ(β) := (2π)−d
∫
Rd

f̂(dξ)

β + |ξ|2
< +∞ for some and hence for all β > 0; (1.6)

Dalang’s condition (1.6) is the weakest condition for the correlation function f in order
to have a random field solution (in the sense of Definition 2.1). Throughout this paper,
we will assume that µ is a nonnegative measure.

Instead of presenting our results in full details, which will be done in Section 1.1, let
us first take a look of several examples. Under Dalang’s condition and for rough initial
data, for either one of the above two scenarios (S-1) or (S-2), we have the following
comparison results:

(E-1) (Moment comparison principle) Form arbitrary space-time points (t`, x`) ∈ (0,∞)×
Rd (not necessarily distinct) and m integers k` ∈ N, ` = 1, · · · ,m, it holds that

E

[
m∏
`=1

uk`1 (t`, x`)

]
≥ E

[
m∏
`=1

uk`2 (t`, x`)

]
. (1.7)

(E-2) For any (t, x) ∈ (0,∞)×Rd, c > 0 and any integer n ≥ 1, it holds that

E
(

[u1(t, x)− c]2n
)
≥ E

(
[u2(t, x)− c]2n

)
. (1.8)

In particular, by choosing c = J0(t, x) (see (2.1) below), (1.8) tells us that all central
moments of even orders can be compared. When n = 1, this is a comparison result
for the variances.

(E-3) For m arbitrary space-time points (t`, x`) ∈ (0,∞)×Rd (not necessarily distinct)
and m integers k` ∈ N, ` = 1, · · · ,m, it holds that

E

[
m∏
`=1

gk`` (u1(t`, x`))

]
≥ E

[
m∏
`=1

gk`` (u2(t`, x`))

]
, (1.9)

where g`(z) can be any of the following functions

exp (−λ`z) ,
1

(1 + z)c`
, or log

(
z + a`
z + b`

)
with λ` > 0, a` > b` > 0 and c`≥1.

(E-4) Statement in (1.9) is true with g`(z) being either of the following two functions:

xb` [log(c` + x)]a` or xd` , with a`, b`, d` ≥ 1 and c` ≥ e.
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(E-5) For any m ≥ 1, tm > · · · > t1 > 0, k1, · · · km ∈ N \ {0}, α1, · · · , αm ∈ [2,∞), and
x`j ∈ Rd with ` = 1, · · · ,m and j = 1, · · · , k` such that

{
x`k1 , · · · , x

`
k`

}
are distinct

points for each `,

E

(
m∏
`=1

[
u21
(
t`, x

`
1

)
+ · · ·+ u21

(
t`, x

`
k`

)]α`
2

)

≥ E

(
m∏
`=1

[
u22
(
t`, x

`
1

)
+ · · ·+ u22

(
t`, x

`
k`

)]α`
2

)
. (1.10)

Note that (1.8) is not a special case of (1.7) when n ≥ 2. The oscillatory nature caused
by the negative one makes (1.8) non-trivial. One more example, that is slightly different
from the above ones, is the following Slepian’s inequality for SPDEs:

(E-6) (Slepian’s inequality for SPDEs) Under the scenario (S-2), if f1 and f2 are equal to
each other near the origin (see the precise meaning in Corollary 1.7 below), then
for all a > 0, t > 0, and x1, · · · , xN ∈ Rd,

P

{
max

1≤k≤N
u1(t, xk) ≤ a

}
≥ P

{
max

1≤k≤N
u2(t, xk) ≤ a

}
. (1.11)

For the parabolic Anderson model (PAM), it is well known that the moments enjoy
the Feynman-Kac representation, based on which one can obtain very sharp estimates
for the moments. The literature is vast and we refer the interested readers to Xia Chen’s
papers [8, 9] and references therein. One may also check the work by Borodin and
Corwin [2] where the p-th moment is represented by some multiple contour integrals.
Using the sharp estimates of the moments for PAM, intermittent phenomena (i.e., the
solution develops tall peaks on small islands of many different scales), have been studied
extensively, e.g., see [3, 14] for the definition and analysis of intermittency in terms of
moments and also [21, 22, 23] for the study on intermittency based on the macroscopic
multi-fractal analysis. However, whenever ρ is nonlinear or whenever the functionals
go beyond the moments functionals, much fewer tools are available. The stochastic
comparison results of the above kinds, including moment comparison principle, play a
fundamental role in this setting.

When the noise is additive, i.e., ρ(u) = constant, the moment comparison principle —
Case (E-1) — under the second scenario (S-2) comes from Isserlis’ theorem [19] since
the solution is a Gaussian random field whose distribution is determined by the spatial
correlation function f . On the other hand, to the best of our knowledge, the comparison
principle including the moment comparison principle under the second scenario is new
for (1.1) with the condition (1.2). As for the first scenario, the moment comparisons
principle — Case (E-1) — has been studied recently. In [20], Joseph, Khoshnevisan and
Mueller proved one-time comparison of (1.7) for the one-dimensional case, i.e., d = 1,
with space-time white noise f = δ0, and t1 = · · · = tm, which was later generalized by
Foondun, Joseph and Li in [13] to the multiple-time comparison of the form (1.7) in the
higher dimensional case d ≥ 1 with the Riesz kernel

f(x) = |x|−β with β ∈ (0, 2 ∧ d). (1.12)

It is easy to see that the Riesz kernel with the range of β specified above satisfies
Dalang’s condition (1.6). In both [20] and [13], the initial conditions are assumed to be
the Lebesgue measure µ(dx) = dx. We will generalize these results to cover rough initial
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data and all possible correlation functions under Dalang’s condition (1.6). Moreover,
we will cover many other functionals other than moment functionals in Case (E-1).
The approximation results in Sections 3 and 4.2 below are interesting by themselves,
where we use different approximation procedures which produce strong solutions in this
paper rather than mild solutions as in [20, 13]. We believe strong solutions are more
straightforward and easier to handle when showing approximations.

1.1 Statement of the main results

In order to state our main results, we first need to introduce some notation. We
first note that under our assumptions, namely, ρ(0) = 0 and the initial data µ being
nonnegative, the solutions to (1.1) are nonnegative (see [5, 7] and also Theorem 5.5
below). Hence, all function spaces in Definition 1.1 have their domains in Rm+ for some
m ≥ 1.

Definition 1.1. For m ≥ 1, let C2,v
(
Rm+ ;R+

)
be the set of nonnegative functions on

Rm+ having continuous second order partial derivatives and all second order partial

derivatives are nonnegative. Let C2,v
b

(
Rm+ ;R+

)
be the set of functions in C2,v

(
Rm+ ;R+

)
such that all partial derivatives of orders 0, 1 and 2 are bounded. Let C2,v

p

(
Rm+ ;R+

)
be

the set of functions in C2,v
(
Rm+ ;R+

)
such that the gradient has at most some polynomial

growth, namely, if f ∈ C2,v
p (Rm+ ;R+), then there exists some constant C > 0 and k ∈ N

such that

| 5 f(z)| ≤ C(1 + |z|k), for all z ∈ Rm+ . (1.13)

Let C2,v
−
(
Rm+ ;R+

)
(resp. C2,v

+

(
Rm+ ;R+

)
) be the set of functions in C2,v

(
Rm+ ;R+

)
such

that all first derivatives are non-positive (resp. nonnegative) and set C2,v
±
(
Rm+ ;R+

)
:=

C2,v
+

(
Rm+ ;R+

)
∪ C2,v

−
(
Rm+ ;R+

)
. Similarly, one can define

C2,v
b,−
(
Rm+ ;R+

)
, C2,v

b,+

(
Rm+ ;R+

)
, C2,v

b,±
(
Rm+ ;R+

)
, and

C2,v
p,−
(
Rm+ ;R+

)
, C2,v

p,+

(
Rm+ ;R+

)
, C2,v

p,±
(
Rm+ ;R+

)
.

Definition 1.2. Let K be the spatial index set, which could be either Rd or Zd or a
finite set {0, · · · , d}. Let FK [C2,v] denote the set of cylindrical nonnegative and twice
continuously differentiable functions, namely,

|K|⋃
m=1

⋃
x`∈K:

`=1,··· ,m,
xi 6=xj , i 6=j

{
f : RK+ 7→ R+ : ∃ g ∈ C2,v(Rm+ ;R+) s.t. f(z) = g (z(x1), · · · , z(xm))

}

(1.14)

where |K| is the cardinality of the index set K, which is equal to d for K = {1, · · · , d}
and∞ when there is countably or uncountable many elements in K. In the same way,
one can define

FK [C2,v
+ ], FK [C2,v

− ], FK [C2,v
b ], FK [C2,v

b,+], FK [C2,v
b,−], FK [C2,v

p ], FK [C2,v
p,+].

(1.15)
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Let FM and FL denote the set of moment and Laplace functions, i.e.,

FKM :=

|K|⋃
m=1

⋃
(k`,x`)∈N×K:

`=1,··· ,m,
xi 6=xj , i 6=j

{
f : RK+ 7→ R+ : f(z) = z(x1)k1 · · · z(xm)km

}
, (1.16)

FKL :=

|K|⋃
m=1

⋃
(λ`,x`)∈R+×K:

`=1,··· ,m,
xi 6=xj , i 6=j

{
f : RK+ 7→ R+ : f(z) = exp

(
−

m∑
`=1

λ` z(x`)

)}
. (1.17)

When there is no ambiguity from the context, we often omit the superscript K for
these function spaces.

Remark 1.3. In [10], F[C2,v] and any one in (1.15) are function cones because we
will see latter that they are preserved under certain semigroup operations (and/or
multiplication). In contrast, FM and FL are not cones in that sense. It is clear that these
sets of functions satisfy the following inclusion relations:

F[C2,v
+ ] ⊆ F[C2,v

± ] ⊆ F[C2,v]

⊆ ⊆ ⊆

FM ⊆ F[C2,v
p,+] ⊆ F[C2,v

p,±] ⊆ F[C2,v
p ]

⊆ ⊆
FL ⊆ F[C2,v

b,−] ⊆ F[C2,v
b,±] ⊆ F[C2,v

b ]

(1.18)

Definition 1.4. Let {ui(t, x); (t, x) ∈ R+ × K}, i = 1, 2, be two random fields, where
K is the spatial index set as in Definition 1.2. For some set of functions F, such as
those defined in Definition 1.2, and for some n ≥ 1, we say that u1 and u2 satisfy
the n-time stochastic comparison principle over F with u1 dominating u2 if for any
0 < t1 < · · · < tn <∞, and F1, . . . , Fn ∈ F, it holds that

E

[
n∏
`=1

F` (u1(t`, ·))

]
≥ E

[
n∏
`=1

F` (u2(t`, ·))

]
. (1.19)

Now we are ready to state our main results:

Theorem 1.5 (Comparison with respect to diffusion coefficients). Suppose that the cor-
relation function f satisfies Dalang’s condition (1.6). Let µ be a nonnegative measure
that satisfies (1.5). Let u1(t, x) and u2(t, x) be two solutions of (1.1), both starting from
µ, but with diffusion coefficients ρ1 and ρ2, respectively. If

either ρ1(x) ≥ ρ2(x) ≥ 0 or ρ1(x) ≤ ρ2(x) ≤ 0 for all x ≥ 0,

then for any integer n ≥ 1, u1 and u2 satisfy the n-time (resp. 1-time) stochastic
comparison principle over either F[C2,v

p,+] or F[C2,v
b,−] (resp. F[C2,v

p ]) with u1 dominating

u2, where the spatial index set is K = Rd.

We now state the stochastic comparison theorem with respect to two comparable
correlation functions f1 and f2.

Theorem 1.6 (Comparison with respect to correlations of noises). Let Ṁ (1) and Ṁ (2)

be two noises with correlation functions f1 and f2, respectively, that satisfy Dalang’s
condition (1.6). Let µ be a nonnegative measure that satisfies (1.5). Let u1(t, x) and
u2(t, x) be two solutions of (1.1), both starting from µ, with the same diffusion coefficient
ρ, driven by Ṁ (1) and Ṁ (2), respectively. If

f1 ≥ f2 (i.e., f1 − f2 is a nonnegative measure),
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then for any integer n ≥ 1, u1 and u2 satisfy the n-time (resp. 1-time) stochastic
comparison principle over either F[C2,v

p,+] or F[C2,v
b,−] (resp. F[C2,v

p ]) with u1 dominating

u2, where the spatial index set is K = Rd.

We would like to point out that for multiple-time comparison results, working on FM
alone won’t be sufficient since FM is not a function cone, i.e., it is not preserved under
the underlying semigroup and multiplication (see Step 3 of the proof of Theorem 1.15
in Section 4.3 below). One needs to go through the function cone F[C2,v

+ ] or F[C2,v
− ] as

in [10]. On the other had, as an application of the 1-time comparison principle, we can
obtain Slepian’s inequality for SPDEs. Let C2

b (Rd;R+) denote the set of C2 functions
with bounded partial derivatives of orders 0, 1 and 2.

Corollary 1.7 (Slepian’s inequality for SPDEs). Under the assumptions in Theorem 1.6
and, in addition, either

(i) for some ε > 0 such that f1
(
[−ε, ε]d

)
= f2

(
[−ε, ε]d

)
or

(ii) both f1 and f2 are in C2
b (Rd;R+) such that f1(0) = f2(0),

we have that, for any numbers ai > 0, xi ∈ Rd for i = 1, . . . , N , and t ≥ 0,

P {u1(t, x1) ≤ a1, . . . , u1(t, xN ) ≤ aN} ≥ P {u2(t, x1) ≤ a1, . . . , u2(t, xN ) ≤ aN} . (1.20)

In particular, for any a > R, xi ∈ Rd for i = 1, . . . , N , and t ≥ 0, the inequality (1.11) it
true.

Here, one example for the case (i) in Corollary 1.7 is that d = 1, f1(x) = δ0(x) +

c(δ−1(x) + δ1(x)) and f2(x) = δ0(x) where c ∈ [0, 1/2] is a fixed constant. For the case (ii),
f1(x) = e−|x|

2

and f2(x) = e−2|x|
2

or f1(x) = 1
1+|x|2 and f2(x) = 1

1+2|x|2 .

Interacting diffusions. The proof of the above comparison theorems 1.5 and 1.6
rely on similar comparison results for the following linearly interacting diffusions, which
are of interest by themselves. Let K denote a non-empty set with at most countably
infinite elements (e.g. K = δZd with δ > 0 fixed or K = {1, · · · , d}). Let us consider dU(t, i) = κ

∑
j∈K

pi,j (U(t, j)− U(t, i)) dt+ ρ(U(t, i))dMi(t), i ∈ K, t > 0,

U(0, i) = u0(i) , i ∈ K,
(1.21)

where κ > 0 is a fixed constant and we make the following assumptions over this
equation:

Assumption 1.8. Assume that

(i) p := {pi,j ; i, j ∈ K} is a probability transition matrix in K such that

Λ := sup
j∈K

∑
i∈K

pi,j < +∞. (1.22)

(ii) ρ : R+ → R+ is a globally Lipschitz function with ρ(0) = 0.

(iii) {Mi(t); t ≥ 0}i∈K is a system of correlated Brownian motions with the following
covariance structure:

E[Mi(t)Mj(s)] = (t ∧ s)γ(i− j), (1.23)

where γ : K → R+ is a non-negative, symmetric and non-negative definite function.

(iv) u0 : K → R+ is a non-negative function in `2(K) such that u0(i) > 0 for some i ∈ K.
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Remark 1.9. Regarding condition (1.22), when the state space K has finite cardinality,
it is trivially satisfied. When the underlying random walk is symmetric, i.e., pi,j = pj,i,
then this condition is satisfied with Λ = 1.

We say that U = {U(t, i); t ≥ 0, i ∈ K} is a strong solution to (1.21) with the initial
data u0(·) if it satisfies that for all i ∈ K and t > 0,

U(t, i) = u0(i) + κ

∫ t

0

∑
j∈K

pi,j(U(s, j)− U(s, i)) ds+

∫ t

0

ρ(U(s, i))dMi(s). (1.24)

The existence and uniqueness of a strong solution to (1.21) when the driving Brownian
motions are independent is well-known (see, e.g., [26]). Since we only need the case
when the initial data is in `2(K) — (iv) of Assumption 1.8, we won’t need the weighted
`2(K) space as was used in [26]. In [13], pi,j depends only on j − i and it is shown that
there is a unique mild solution to (1.21) in L∞([0, T ]×K;Lk(Ω)) for any T > 0 and k ≥ 2.
The next theorem, on the other hand, provides a proof of existence and uniqueness of
a strong solution in a slightly better space (see (1.25)) and for more general transition
probabilities pi,j . As one can see later, a strong solution is easier to handle than a mild
solution when showing approximations.

Theorem 1.10. There exists a unique strong solution {U(t, i); t ≥ 0, i ∈ K} to (1.21) in

L∞
(
[0, T ];Lk

(
Ω; `k(K)

))
for any T > 0 and k ≥ 2. (1.25)

In particular, U(t, ·) ∈ `k(K) a.s. for any t ≥ 0 and k ≥ 2. Moreover, for any T > 0 and
k ≥ 2,

sup
0≤t≤T

E

[
sup
i∈K
|U(t, i)|k

]
≤ sup

0≤t≤T
E
[
||U(t, ·)||k`k(K)

]
≤ 3k‖u0‖k`k(K) exp

(
Ck2T

)
<∞,

(1.26)

where the constant C > 0 depends only on κ,Lipρ, γ(0) and Λ.

Note that the discrete nature of the spatial variable enables us to bring the supremum
over the spatial variable inside the expectation; see (4.10). This is in general not true
when the spatial variable lives in Rd. For this interacting diffusions (1.21), we have the
following two similar stochastic comparison results:

Theorem 1.11 (Comparison with respect to diffusion coefficients). Let U1 and U2 be
two solutions to (1.21), both starting from u0, but with diffusion coefficients ρ1 and ρ2,
respectively. Then the condition

ρ1(x) ≥ ρ2(x) ≥ 0 or ρ1(x) ≤ ρ2(x) ≤ 0, for all x ≥ 0

implies that for any integer n ≥ 1, U1 and U2 satisfy the n-time (resp. 1-time) stochastic
comparison principle over either F[C2,v

p,+] or F[C2,v
b,−] (resp. F[C2,v

p ]) with U1 dominating
U2.

Theorem 1.12 (Comparison with respect to covariances of noises). Let U1 and U2 be
two solutions to (1.21), both starting from u0, with the same diffusion coefficients ρ, but
driven by two sets of correlated Brownian motions {M (1)

i (t); t ≥ 0}i∈K and {M (2)
i (t); t ≥

0}i∈K , respectively. Let γi be the covariance function for M (i). Then the condition

γ1(k) ≥ γ2(k), for all k ∈ K

implies that for any integer n ≥ 1, U1 and U2 satisfy the n-time (resp. 1-time) stochastic
comparison principle over either F[C2,v

p,+] or F[C2,v
b,−] (resp. F[C2,v

p ]) with U1 dominating U2.
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Corollary 1.13 (Slepian’s inequality for interacting diffusions). Under the assumptions
in Theorem 1.12 and, in addition,

γ1(0) = γ2(0),

we have that, for any numbers ak ∈ R, ik ∈ K for k = 1, . . . , N , and t ≥ 0,

P {U1(t, i1) ≤ a1, . . . , U1(t, iN ) ≤ aN} ≥ P {U2(t, i1) ≤ a1, . . . , U2(t, iN ) ≤ aN} . (1.27)

In particular, we have that, for any a ∈ R, ik ∈ K for k = 1, . . . , N , and t ≥ 0,

P

{
max

1≤k≤N
U1(t, ik) ≤ a

}
≥ P

{
max

1≤k≤N
U2(t, ik) ≤ a

}
. (1.28)

At the very core of the chain of arguments is the following comparison results for
the finite dimensional SDE with C2

c (R+) diffusion coefficient. Here C2
c (R+) = C2

c (R+;R)

refers to the functions defined on R+, having compact support and continuous second
derivative.

Assumption 1.14. In the SDE (1.21), we assume that (i) ρ ∈ C2
c (R+) and ρ(u0(i)) 6= 0

for some i ∈ K; and (ii) the cardinality of the index set K is finite.

Theorem 1.15. Under Assumption 1.14, the statement in Theorem 1.11 is true with
F[C2,v

p,+], F[C2,v
b,−], and F[C2,v

p ] replaced by F[C2,v
+ ], F[C2,v

− ] and F[C2,v], respectively.

Theorem 1.16. Under Assumption 1.14, the statement in Theorems 1.12 is true with
F[C2,v

p,+], F[C2,v
b,−], and F[C2,v

p ] replaced by F[C2,v
+ ], F[C2,v

− ] and F[C2,v], respectively.

Both Theorem 1.11 and Theorem 1.15 are essentially covered by Cox, Fleischmann
and Greven [10]. The main difference is that Theorem 1.11 covers a much richer family
of functions and another difference is that we have correlated, instead of independent,
Brownian motions; See Remark 4.5 below for more details.

1.2 Outline of the paper

This paper is organized as follows: After some definitions, notation and preliminaries
in Section 2, we provide the approximation procedure which shows thatSHE (1.1) with
rough initial data and noise whose spatial correlation only satisfies Dalang’s condi-
tion (1.6) can be approximated by systems of infinite dimensional SDEs (i.e., interacting
diffusions on the d-dimensional lattice) in Section 3. Combining the approximation
procedures and the comparison theorems for infinite dimensional SDEs (Theorems 1.11
and 1.12, and Corollary 1.13) proves the main theorems 1.5 and 1.6 and also Slepian’s
inequality for SPDEs – Corollary 1.7 in Section 3.4. It remains to establish Theorems 1.11
and 1.12, and Corollary 1.13, which is done in Section 4. We first prove the existence and
uniqueness result — Theorem 1.10 — in Section 4.1. Then we will prove Theorems 1.11
and 1.12 by first showing that a system of infinite dimensional SDEs can be approximated
by systems of finite dimensional SDEs with a nice ρ in Section 4.2 and then obtaining
the comparison theorems for finite dimensional SDEs following the procedure of Cox,
Fleischmann and Greven [10] in Section 4.3. With these preparations, we proceed to
prove Theorems 1.11 and 1.12 and Corollary 1.13 in Section 4.4. Finally, in Section 5,
we give several examples to cover those in (E-1) – (E-5) above and one application of our
approximation results to give another straightforward proof for the weak sample path
comparison principle.

2 Some definitions, notation and preliminaries

Throughout this paper, ||·||p denotes the Lp(Ω)-norm, N := {0, 1, 2, · · · }, Lipρ refers to

the Lipschitz constant for ρ, Di := ∂
∂xi

, and R+ := [0,∞).
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Recall that a spatially homogeneous Gaussian noise that is white in time is an L2(Ω)-
valued mean zero Gaussian process on a complete probability space (Ω,F ,P){

F (ψ) : ψ ∈ C∞c
(
[0,∞)×Rd

) }
,

such that

E [F (ψ)F (φ)] =

∫ ∞
0

ds

∫∫
R2d

ψ(s, x)φ(s, y)f(x− y)dxdy.

Let Bb(Rd) be the collection of Borel measurable sets with finite Lebesgue measure. As
in Dalang-Walsh theory [11, 29], one can extend F to a σ-finite L2(Ω)-valued martingale
measure B 7→ F (B) defined for B ∈ Bb(R+ ×Rd), where R+ := [0,∞). Then define

Mt(B) := F ([0, t]×B) , B ∈ Bb(Rd).

Let (Ft, t ≥ 0) be the natural filtration generated by M·(·) and augmented by all P-null
sets N in F , i.e.,

Ft := σ
(
Ms(A) : 0 ≤ s ≤ t, A ∈ Bb

(
Rd
))
∨N , t ≥ 0,

Then for any adapted, jointly measurable (with respect to B
(
(0,∞)×Rd

)
×F) random

field {X(t, x) : t > 0, x ∈ Rd} such that for all integers p ≥ 2,∫ ∞
0

ds

∫∫
R2d

dxdy ||X(s, y)X(s, x)|| p
2
f(x− y) <∞,

the stochastic integral ∫ ∞
0

∫
Rd
X(s, y)M(ds,dy)

is well-defined in the sense of Dalang-Walsh. Here we only require the joint-measurability
instead of predictability; see in [6, Proposition 2.2] and [4, Proposition 3.1].

Let J0(t, x) denote the solution to the homogeneous equation

J0(t, x) := (µ ∗G(t, ·))(x) =

∫
Rd
G(t, x− y)µ(dy), (2.1)

and I(t, x) be the stochastic integral in the mild form (1.3). Hence, the mild form (1.3)
can be written as u(t, x) = J0(t, x) + I(t, x).

Definition 2.1. A process u =
(
u(t, x), (t, x) ∈ (0,∞)×Rd

)
is called a random field

solution to (1.1) if

(1) u is adapted, i.e., for all (t, x) ∈ (0,∞)×Rd, u(t, x) is Ft-measurable;

(2) u is jointly measurable with respect to B
(
(0,∞)×Rd

)
×F ;

(3) ||I(t, x)||2 < +∞ for all (t, x) ∈ (0,∞)×Rd;

(4) I is L2(Ω)-continuous, i.e., the function (t, x) 7→ I(t, x) mapping (0,∞) × Rd into
L2(Ω) is continuous;

(5) u satisfies (1.3) a.s., for all (t, x) ∈ (0,∞)×Rd.

Existence and uniqueness of a random field solution for bounded initial data is covered
by classical Dalang-Walsh theory [11, 29]. For rough initial data, this is established in
[4, 5, 6, 17]. A key tool for dealing the rough initial data is the following moment formula.
We need first introduce some notation. Denote

k(t) :=

∫
Rd
f(z)G(t, z)dz. (2.2)
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By the Fourier transform, this function can be written in the following form

k(t) := (2π)−d
∫
Rd
f̂(dξ) exp

(
− t|ξ|

2

2

)
. (2.3)

Define h0(t) := 1 and for n ≥ 1,

hn(t) =

∫ t

0

ds hn−1(s)k(t− s). (2.4)

Theorem 2.2 (Moment bounds, Theorem 1.7 of [5]). Under Dalang’s condition (1.6), if
the initial data µ is a signed measure that satisfies (1.5), then the solution u to (1.1) for
any given t > 0 and x ∈ Rd is in Lp(Ω), p ≥ 2, and

||u(t, x)||p ≤
[
ς +
√

2 (|µ| ∗G(t, ·)) (x)
]
H (t; γp)

1/2
, (2.5)

where ς = |ρ(0)|/Lipρ, γp = 32pLip2
ρ, Lipρ > 0 is the Lipschitz constant for ρ, and

H(t; γ) :=

∞∑
n=0

γnhn(t), for all γ ≥ 0. (2.6)

Moreover, if the strengthened Dalang’s condition (2.7) is satisfied, namely,∫
Rd

f̂(dξ)

(1 + |ξ|2)
1−α <∞, for some α ∈ (0, 1], (2.7)

then when p ≥ 2 is large enough, there exists some constant C > 0 such that

||u(t, x)||p ≤ C
[
ς + (|µ| ∗G(t, ·)) (x)

]
exp

(
C Lip2/α

ρ p1/αt
)
. (2.8)

Note that H(t; γ) in (2.6) has genuine exponential growth as proved in the following
lemma:

Lemma 2.3 (Lemma 2.5 in [6] or Lemma 3.8 in [1]). For all t ≥ 0 and γ ≥ 0, recalling
that Υ(β) is defined in (1.6), it holds that

lim sup
t→∞

1

t
logH(t; γ) ≤ inf

{
β > 0 : Υ (2β) <

1

2γ

}
. (2.9)

3 Approximation procedure and the proof of Theorems 1.5 and
1.6

The following approximation procedure is interesting by itself, based on which our
comparison results are direct consequences (see Step 4). Basically, we show that
stochastic heat equations on Rd with rough initial condition and driven by Gaussian
noise which is white in time and correlated in space can be approximated by systems of
interacting diffusions on the d-dimensional lattice. There are several steps in order to
achieve this goal.

3.1 Step 1 (Regularization of the initial data and noise)

We will need the following approximation results, which were proved in Theorem 1.9
of [5] for L2(Ω) case. The generalization to the Lp(Ω), p ≥ 2, is straightforward thanks
to the moment formula (2.5).
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Lemma 3.1. Assume that f satisfies Dalang’s condition (1.6).
(1) Suppose that the initial measure µ satisfies (1.5). If u and uε are the solutions to (1.1)
starting from µ and ((µ ψε) ∗G(ε, ·))(x), respectively, where

ψε(x) = 1I{|x|≤1/ε} + (1 + 1/ε− |x|) 1I{1/ε<|x|≤1+1/ε}, (3.1)

then
lim
ε→0+

||u(t, x)− uε(t, x)||p = 0, for all p ≥ 2, t > 0 and x ∈ Rd.

(2) Let φ be any continuous, nonnegative and nonnegative definite function on Rd with
compact support such that

∫
Rd
φ(x)dx = 1. Let u be the solution to (1.1) starting from

bounded initial data, i.e., µ(dx) = g(x)dx with g ∈ L∞(Rd). If ũε is the solution to the
following mollified equation

∂

∂t
ũε(t, x) =

1

2
∆ũε(t, x) + ρ(ũε(t, x))Ṁ ε(t, x) , (3.2)

with the same initial condition ũε(0, ·) = µ as u, where

M ε(ds,dx) =

∫
Rd
φε(x− y)M(ds,dy)dx , (3.3)

and φε(x) = ε−dφ(x/ε), then the spatial correlation function f ε,ε for M ε is given by
f ε,ε = φε ∗φε ∗ f which satisfies the strengthened Dalang’s condition (2.7) with α = 1 and

lim
ε→0+

sup
x∈Rd

||u(t, x)− ũε(t, x)||p = 0, for all p ≥ 2 and t > 0. (3.4)

Moreover, one can always find such φ so that

f ε,ε(·) ∈ C2(Rd;R+) with
∂

∂xi
f ε,ε(0) = 0 and sup

x∈Rd

∣∣∣∣ ∂2

∂xixj
f ε,ε(x)

∣∣∣∣ <∞ (3.5)

for all i, j = 1, · · · , d.

Proof. (1) Theorem 1.7 of [5] shows that

uε(t, x)→ u(t, x) in L2(Ω), for all t > 0 and x ∈ Rd. (3.6)

If one can show that for any p > 2

sup
ε∈(0,1)

||uε(t, x)||p <∞, for all t > 0 and x ∈ Rd, (3.7)

then the L2(Ω) convergence in (3.6) also holds for all p > 2.
Let µε := ((µ ψε) ∗G(ε, ·)) (x). Since, for some constant Ct > 0, G(t+ ε, x) ≤ CtG(2t, x)

for all x ∈ Rd and ε ∈ (0, 1 ∧ t), we have

(|µε| ∗G(t, ·)) (x) ≤ (|µ| ∗G(t+ ε, ·)) (x) ≤ Ct (|µ| ∗G(2t, ·)) (x) <∞.

Hence, (2.5) in Theorem 2.2 shows (3.7), which also proves part (1) of Lemma 3.1.

(2) From the direct computation, the spatial covariance function for M ε is given by
f ε,ε(x) := (φε ∗ φε ∗ f)(x) and f ε,ε is nonnegative and nonnegative definite and it satisfies
strengthened Dalang’s condition (2.7) for each ε > 0 (see Step 3 of Section 7 of [5]). In
addition, the L2(Ω) convergence has been established in Theorem 1.7 of [5]. As in the
proof of part (1), we need only show that for all t > 0 and p ≥ 2,

sup
ε∈(0,1)

sup
x∈Rd

||ũε(t, x)||p <∞. (3.8)
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By Theorem 2.2,
||ũε(t, x)||p ≤ CHε(t, γp)

1/2,

where we have used the fact that g ∈ L∞(Rd) and γp = 32pLip2
ρ, and Hε(t; γp) is defined

in (2.6) with the function k(·) replaced by kε(·). Because

|φ̂ε(ξ)|2 = |φ̂(εξ)|2 =

∣∣∣∣∫
Rd
e−iε〈ξ,x〉φ(x)dx

∣∣∣∣2 ≤ (∫
Rd
φ(x)dx

)2

= 1,

which implies that

kε(t) =

∫
Rd
f ε,ε(z)G(t, z)dz = (2π)−d

∫
Rd
f̂(dξ)φ̂ε(ξ)

2 exp

(
− t|ξ|

2

2

)
≤ (2π)−d

∫
Rd
f̂(dξ) exp

(
− t|ξ|

2

2

)
= k(t),

for all ε > 0, where K(t) is defined in (2.2), we see that

||ũε(t, x)||p ≤ CH(t, γp)
1/2,

where the upper bound is uniform in both ε and x.
It remains to prove (3.5). Let g(x) = 1[−1,1]d(x) for x ∈ Rd and choose

φ(x) = 4−d(g ∗ g)(x) = 4−d
d∏
i=1

(2− |xi|)1I{|xi|≤2}.

It is easy to see that φ is a continuous, nonnegative and nonnegative definite function
on Rd with compact support such that

∫
Rd
φ(x)dx = 1. It is also clear that f ε,ε(·) ∈

C2(Rd;R+). Fix i ∈ {1, · · · , d}. To show that ∂
∂xi

f ε,ε(0) = 0, it suffices to show this for
ε = 1. Direct computation shows that

∂n

∂xni
f1,1(0) =

∫
Rd

∂n

∂xni
φ2(y) f(dy)

with φ2(x) = (φ ∗ φ)(x) = 4−d
∏d
i=1 θ(xi) and

θ(xi) =

(
1

2
(|xi| − 4)x2i +

16

3

)
1I{|xi|≤2} +

1

6
(4− |xi|)31I{2≤|xi|≤4}.

It is clear that θ(·) is an even and C2 function on R with θ′(·) being a continuous odd
function and θ′′(·) a continuous even function. More precisely,

θ′(xi) =
1

2
xi(3|xi| − 8)1I{|xi|≤2} −

1

2
sign(xi)(4− |xi|)21I{2≤|xi|≤4},

θ′′(xi) = (3|xi| − 4)1I{|xi|≤2} − (4− |xi|)1I{2≤|xi|≤4}.

Because f is nonnegative definite, we see that

∂

∂xi
f1,1(0) =

∫
Rd

∂

∂xi
φ2(y)f(dy) = 4−d

∫
Rd

∏
j 6=i

θ(yj)

 θ′(yi)f(dy) = 0.

One can also find some constant C > 0 large enough such that for all i, j ∈ {1, · · · , d},∣∣∣∣ ∂2

∂xixj
φ2(x)

∣∣∣∣ ≤ C d∏
i=1

(4− |xi|) 1I{|xi|≤4} = C
(
1I{|·|≤2} ∗ 1I{|·|≤2}

)
(x),
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where the right-hand side is a continuous, nonnegative, and nonnegative definite function.
Hence, for any i, j ∈ {1, · · · , d},∣∣∣∣ ∂2

∂xixj
f1,1(x)

∣∣∣∣ ≤∫
Rd

∣∣∣∣ ∂2

∂xixj
φ2(x− y)

∣∣∣∣ f(dy)

≤C
∫
Rd

d∏
i=1

(4− |xi − yi|)1I{|xi−yi|≤4}f(dy)

≤C
∫
Rd

d∏
i=1

(4− |yi|)1I{|yi|≤4}f(dy) <∞,

where the third inequality is due to the fact that the integrand is a nonnegative definite
function and in the last inequality we use the fact that the integrand is a continuous
function. This completes the proof of Lemma 3.1.

We also point out that the initial data ((µ ψε) ∗G(ε, ·))(x) in the above theorem has
Gaussian tails so that it is in Lp(Rd) for any p ∈ [1,∞). This will be used in Step 4 of
Section 3.4.

Lemma 3.2. Suppose that µ is a (possibly signed) Borel measure that satisfies (1.5).
For any δ > ε > 0, there exists some constant C = C(ε, δ, µ) > 0 such that

|((µ ψε) ∗G(ε, ·))(x)| ≤ C G(δ, x),

for all x ∈ Rd, where ψε(·) is given by (3.1).

Proof. Fix δ > ε > 0 and denote

Ψ(x) :=
|((µ ψε) ∗G(ε, ·))(x)|

G(δ, x)
.

It is clear that Ψ is a nonnegative and smooth function. Notice that

G(ε, x− y)

G(δ, x)
= (δ/ε)d/2 exp

− (δ − ε)
∣∣∣x− δ

δ−εy
∣∣∣2

2εδ
+

|y|2

2(δ − ε)

 ≤ (δ/ε)d/2 exp

(
|y|2

2(δ − ε)

)
.

Hence,

Ψ(x) ≤ (δ/ε)d/2
∫
|y|≤1+1/ε

|µ|(dy) exp

(
|y|2

2(δ − ε)

)
=: C(ε, δ, µ) <∞,

which proves the lemma.

3.2 Step 2 (Mollification of the Laplacian operator)

In this section, we regularize the Laplacian operator by using Yosida’s approximation.
Thanks to Step 1, we may assume that the initial data µ(dx) = u0(x)dx with u0 ∈ S(Rd),
i.e., u0 is a Schwartz test function, and f ∈ C2(Rd;R+) with

∂

∂xi
f ε,ε(0) = 0 and sup

x∈Rd

∣∣∣∣ ∂2

∂xixj
f ε,ε(x)

∣∣∣∣ <∞, for all i, j = 1, · · · , d. (3.9)

First, let us view the G(t, x) as an operator, denoted by G(t), as follows:

G(t)f(x) := (G(t, ·) ∗ f)(x) . (3.10)
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Let I be the identity operator: If(x) := (δ ∗ f)(x) = f(x). For any ε ∈ (0, 1), set

∆ε =
G(ε)− I

ε
. (3.11)

Let

Gε(t) = exp(t∆ε) = e−
t
ε

∞∑
n=0

(t/ε)n

n!
G(nε) := e−t/εI + Rε(t) , (3.12)

where the operator Rε(t) has a density, denoted by Rε(t, x), which is equal to

Rε(t, x) = e−t/ε
∞∑
n=1

(t/ε)n

n!
G(nε, x) . (3.13)

Because f ∈ C2(Rd;R+), the stochastic integral with respect to M(ds,dy) is equivalent
to the stochastic integral with respect to My(ds)dy, where {Mx(t), t ≥ 0, x ∈ Rd} are
Brownian motions starting from zero indexed by x ∈ Rd with the following correlation
structure

E[Mx(t)My(t)] = f(x− y) t. (3.14)

Denote Ṁx(t) = d
dtMx(t). Consider the following stochastic differential equation
∂

∂t
uε(t, x) = ∆εuε(t, x) + ρ(uε(t, x))Ṁx(t) , t > 0 , x ∈ Rd ,

uε(0, x) = u0(x) , x ∈ Rd .
(3.15)

Since ρ is Lipschitz continuous and ∆ε is a bounded operator, (3.15) has a unique strong
solution

uε(t, x) = u0(x) +

∫ t

0

ds∆εuε(s, x) +

∫ t

0

ρ(uε(s, x))Mx(ds) , (3.16)

where ∫ t

0

ds∆εuε(s, x) =
1

ε

∫ t

0

∫
Rd
G(ε, x− y) [uε(s, y)− uε(s, x)] dyds. (3.17)

We will need the following lemma regarding the spatial regularity of uε(t, x).

Lemma 3.3. Let uε be a solution to (3.15). If the initial data u0 ∈ S(Rd), and if the
correlation function f in (3.14) is in ∈ C2(Rd;R+) with f ′(0) ≡ 0 and f ′′(·) being bounded,
then for any ε > 0, T > 0, and p ≥ 2, there is a constant C = C(T, p, ε, µ,Lipρ) > 0 such
that

||uε(t, x)− uε(t, y)||p ≤ C|x− y|, for all t ∈ [0, T ] and x, y ∈ Rd.

Proof. Fix p ≥ 2, T > 0, and ε > 0. Let C be a generic constant that may depend on
these constants, namely, T , p, ε, and Lipρ. For any t ∈ [0, T ] and x, y ∈ Rd, we have that

uε(t, x)− uε(t, y) =u0(x)− u0(y)

+
1

ε

∫ t

0

ds

∫
Rd

dz [G(ε, x− z)−G(ε, y − z)] [uε(s, z)− uε(s, x)]

+
1

ε

∫ t

0

ds [uε(s, y)− uε(s, x)]

+

∫ t

0

[ρ(uε(s, x))− ρ(uε(s, y))]Mx(ds)

+

∫ t

0

ρ(uε(s, y)) [Mx(ds)−My(ds)]

=:

5∑
`=1

I`.
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It is clear that |I1| ≤ ||u′0||L∞(Rd) |x − y|. The boundedness and regularity of the initial
data implies that

AT,p,ε := sup
s∈[0,T ]

sup
x∈Rd

||uε(s, x)||p <∞. (3.18)

Hence, we have that

||I2||p ≤2AT,p,ε
1

ε

∫ t

0

ds

∫
Rd

dz |G(ε, x− z)−G(ε, y − z)| .

Notice that Lemma 3.1 of [5] with α = 1 implies that

|G(ε, x− z)−G(ε, y − z)| ≤ C√
ε

(G(2ε, x− z) +G(2ε, y − z)) |x− y|.

Therefore,

||I2||p ≤ C|x− y|
∫ t

0

ds

∫
Rd

dz (G(2ε, x− z) +G(2ε, y − z)) = C|x− y|,

where we note that the constants C depend on ε.
As for I3, we see that

||I3||2p ≤
1

ε2

(∫ t

0

||uε(s, y)− uε(s, x)||p ds

)2

≤ T

ε2

∫ t

0

||uε(s, y)− uε(s, x)||2p ds.

As for I4, by (3.14) and the Burkholder-Davis-Gundy inequality, we see that

||I4||2p ≤C Lipρ f(0)

∫ t

0

||uε(s, y)− uε(s, x)||2p ds. (3.19)

As for I5, by the Burkholder-Davis-Gundy inequality, (3.14), and (3.18), we see that

||I5||2p ≤C
∣∣∣∣∣∣∣∣〈∫ ·

0

ρ(uε(s, y)) [Mx(ds)−My(ds)]

〉
t

∣∣∣∣∣∣∣∣
p/2

=C

∣∣∣∣∣∣∣∣2 ∫ t

0

ρ(uε(s, y))2 [f(0)− f(x− y)] ds

∣∣∣∣∣∣∣∣
p/2

≤C
∫ t

0

||ρ(uε(s, y))||p |f(0)− f(x− y)|ds

≤C |f(0)− f(x− y)| .

Because f ∈ C2(Rd;R+) with properties (3.9), we see that |f(0)− f(x− y)| ≤ C|x− y|2.
Therefore,

||I5||p ≤ C|x− y|.

Combining these five terms, we see that

||uε(t, x)− uε(t, y)||2p ≤ C|x− y|
2 + C

∫ t

0

||uε(s, y)− uε(s, x)||2p ds.

Finally, an application of Gronwall’s lemma proves Lemma 3.3.

Lemma 3.4. Under the same setting as in Lemma 3.3, we have that

lim
ε→0

sup
x∈Rd

‖uε(t, x)− u(t, x)‖p = 0 , for all t > 0 and p ≥ 2 , (3.20)

where u(t, x) is the solution to the same equation (3.15) but with ∆ε replaced by the
standard Laplacian operator ∆.
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Proof. The proof of this lemma is very similar to the proof of Lemma 3.1. In particular,
since

uε(t, x) = (u0 ∗Gε(t, ·)) (x) +

∫ t

0

e−(t−s)/ερ(uε(s, x))dMx(s)

+

∫ t

0

∫
Rd
Rε(t− s, x− y)ρ(uε(s, y))dMy(s), and

u(t, x) = (u0 ∗G(t, ·)) (x) +

∫ t

0

∫
Rd
G(t− s, x− y)ρ(u(s, y))dMy(s),

we see that

||uε(t, x)− u(t, x)||2p ≤ C
4∑

n=1

In(t, x; ε),

with

I1(t, x; ε) := [(u0 ∗ {Gε(t, ·)−G(t, ·)}) (x)]
2
,

I2(t, x; ε) :=

∣∣∣∣∣∣∣∣∫ t

0

e−(t−s)/ερ(uε(s, x))dMx(s)

∣∣∣∣∣∣∣∣2
p

,

I3(t, x; ε) :=

∣∣∣∣∣∣∣∣∫ t

0

∫
Rd
Rε(t− s, x− y) [ρ (uε(s, y))− ρ (u(s, y))] dMy(s)

∣∣∣∣∣∣∣∣2
p

,

I4(t, x; ε) :=

∣∣∣∣∣∣∣∣∫ t

0

∫
Rd

[Rε(t− s, x− y)−G(t− s, x− y)] ρ (u(s, y)) dMy(s)

∣∣∣∣∣∣∣∣2
p

.

By Lemma B.3 of [5] and the boundedness of the initial data u0, we see that I1(t, x; ε) ≤ Cε.
The boundedness of the initial data implies that

At := sup
ε∈(0,1]

sup
s∈[0,t]

sup
x∈Rd

||uε(s, x)||2p ∨ ||u(s, x)||2p <∞. (3.21)

Now we apply the Burkholder-Davis-Gundy inequality, (3.21), and the fact that f(0) <∞
to both I2 and I4 to see that

I2(t, x; ε) ≤ C
∫ t

0

e−
2(t−s)
ε ds ≤ Cε, and

I4(t, x; ε) ≤ Cpf(0)

∫ t

0

ds

[∫
Rd
|Rε(t− s, x− y)−G(t− s, x− y)|dy

]2
≤ C

∫ t

0

(
e−s/ε +

√
ε

s

)
ds ≤ C

√
ε,

where among the two factors of
∫
Rd
|Rε −G|dy, we have bounded one by 2 and the other

one by C(e−s/ε −
√
ε/s) using Lemma B.3 of [5]. Similarly, for I3, we have that

I3(t, x; ε) ≤ Cf(0)

∫ t

0

ds sup
z∈Rd

||uε(s, z)− u(s, z)||2p

[∫
Rd
Rε(t− s, x− y)dy

]2
≤ C

∫ t

0

ds sup
z∈Rd

||uε(s, z)− u(s, z)||2p

Combining these arguments, we see that

sup
x∈Rd

||uε(s, x)− u(s, x)||2p ≤ C
√
ε+ C

∫ t

0

ds sup
z∈Rd

||uε(s, z)− u(s, z)||2p .

Finally, an application of Gronwall’s lemma proves the lemma.

EJP 25 (2020), paper 140.
Page 17/38

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP541
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Stochastic comparisons for SHE

3.3 Step 3 (Discretization in space)

For δ ∈ (0, 1) and x ∈ R, denote

[x]δ :=
[x
δ

]
δ,

where [x] is the function that rounds half away from zero, e.g., [4.5] = 5 and [−4.5] = −5.
Note that [x]δ is an odd function of x. Moreover, for x ∈ Rd, set

[x] = ([x1], . . . , [xd]) and [x]δ = ([x1]δ, . . . , [xd]δ).

For x ∈ Rd, denote

Qδ(x) :=

{
y ∈ Rd : |xi − yi| ≤

δ

2
, i = 1, . . . , d

}
.

For ε and δ ∈ (0, 1), and i, j ∈ Zd, let

P ε,δij :=

∫
Qδ(jδ)

Gd(ε, iδ − y)dy =

d∏
k=1

∫ (ik−jk+1/2)δ

(ik−jk−1/2)δ
G1(ε, y)dy,

where Gd(t, x) is the heat kernel on Rd (see (1.4)) and when there is no confusion from
the context, we will simply write it as G(t, x).

Now we consider the following infinite dimensional SDE:
duδε(t, iδ) =

1

ε

∑
j∈Zd

P ε,δij
[
uδε(t, jδ)− uδε(t, iδ)

]
+ ρ(uδε(t, iδ))dM

ε
iδ(t), t > 0 , i ∈ Zd ,

uδε(0, iδ) = (µ ∗G(ε, ·))(iδ) , i ∈ Zd .
(3.22)

It has a strong solution

uδε(t, iδ) = (µ ∗G(ε, ·))(iδ)+
∫ t

0

1

ε

∑
j∈Zd

P ε,δij
[
uδε(s, jδ)− uδε(s, iδ)

]
ds

+

∫ t

0

ρ(uδε(s, iδ))dM
ε
iδ(s).

(3.23)

We first note that (3.23) is a discretization of (3.16): If we replace x in (3.16) by [x]δ
and set i = [x/δ], we see that the first and third terms on the r.h.s. of (3.16) becomes the
first and third terms on the r.h.s. of (3.23), respectively. The r.h.s. of (3.17) becomes

1

ε

∫ t

0

∫
Rd
G(ε, iδ − y) [uε(s, y)− uε(s, iδ)] dyds

≈ 1

ε

∫ t

0

ds
∑
j∈Zd

∫
Qδ(jδ)

G(ε, iδ − y) [uε(s, jδ)− uε(s, iδ)] dy

=
1

ε

∫ t

0

ds
∑
j∈Zd

P ε,δij [uε(s, jδ)− uε(s, iδ)] ,

which is equal to the second term on the r.h.s. of (3.23) (then one may put a superscript
δ in uε to denote the step size of this discretization).

Note that {M ε
iδ(t), t ≥ 0}i∈Z is a sequence of correlated Brownian motions starting

from zero with

E
(
M ε
iδ(t)M

ε
jδ(s)

)
=(t ∧ s)

∫∫
R2d

G(ε, iδ − y1)G(ε, jδ − y2)f(y1 − y2)dy1dy2

=(t ∧ s)
∫
Rd

exp
(
−2ε|ξ|2

)
cos(δ(i− j) · ξ) f̂(dξ);

see (3.14).
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The main result of this step is the following lemma:

Lemma 3.5. Suppose that the initial data µ is bounded, i.e., µ(dx) = g(x)dx with
g ∈ L∞(Rd). Let uε(t, x) be the strong solution (3.16) to (3.15) and for any ε, δ ∈ (0, 1),
let uδε(t, [x]δ) be the system of stochastic differential equations given in (3.22). Then for
any t > 0, x ∈ Rd and p ≥ 2, it holds that

lim
δ→0+

sup
x∈Rd

∣∣∣∣uε(t, x)− uδε(t, [x]δ)
∣∣∣∣
p

= 0. (3.24)

Proof. Fix arbitrary p ≥ 2, t > 0 and x ∈ Rd. Notice that∣∣∣∣uε(t, x)− uδε(t, [x]δ)
∣∣∣∣
p
≤ ||uε(t, x)− uε(t, [x]δ)||p +

∣∣∣∣uε(t, [x]δ)− uδε(t, [x]δ)
∣∣∣∣
p

=:Iε,δ1 (t, x) + Iε,δ2 (t, x).

For Iε,δ1 , Lemma 3.3 shows that

sup
x∈Rd

Iε,δ1 (t, x) ≤ sup
s∈[0,t]

sup
j∈Zd

sup
x,y∈Qδ(jδ)

||uε(s, x)− uε(s, y)||p ≤ Cεδ. (3.25)

Now we study Iε,δ2 . Denote vδε (t, [x]δ) := uδε(t, [x]δ) − uε(t, [x]δ). By setting i = [x/δ], we
see that

vε(t, iδ) =
4∑
`=1

Aε,δ` (t, iδ),

where

Aε,δ1 (t, iδ) :=
1

ε

∫ t

0

ds
∑
j∈Zd

∫
Qδ(jδ)

dy G(ε, iδ − y) [uε(s, y)− uε(s, jδ)] ,

Aε,δ2 (t, iδ) :=
1

ε

∫ t

0

ds
∑
j∈Zd

∫
Qδ(jδ)

dy G(ε, iδ − y)vδε (s, jδ),

Aε,δ3 (t, iδ) := −1

ε

∫ t

0

vδε (s, iδ) ds,

Aε,δ4 (t, iδ) :=

∫ t

0

[
ρ
(
uδε(s, iδ)

)
− ρ (uε(s, iδ))

]
dM ε

iδ(s).

By Lemma 3.3 again (see also (3.25)),∣∣∣∣∣∣Aε,δ1 (t, iδ)
∣∣∣∣∣∣
p
≤ Cεδ.

For Aε,δ2 and Aε,δ3 , by Minkowski’s inequality, we see that

max
`=1,2

∣∣∣∣∣∣Aε,δ` (t, iδ)
∣∣∣∣∣∣
p
≤ 1

ε

∫ t

0

sup
j∈Zd

∣∣∣∣vδε (s, jδ)∣∣∣∣p ds.
For Aε,δ4 , by the same argument as (3.19), we see that∣∣∣∣∣∣Aε,δ4

∣∣∣∣∣∣2
p
≤Cε

∫ t

0

sup
j∈Zd

∣∣∣∣vδε (s, jδ)∣∣∣∣2p ds.

Combining these terms we see that

sup
j∈Zd

∣∣∣∣vδε (t, jδ)∣∣∣∣2p ≤ Cεδ2 + Cε

∫ t

0

sup
j∈Zd

∣∣∣∣vδε (s, jδ)∣∣∣∣2p ds.

An application of Gronwall’s lemma implies that

Iε,δ2 ≤ sup
j∈Zd

∣∣∣∣vδε (t, jδ)∣∣∣∣p ≤ Cεδ. (3.26)

Finally, (3.25) and (3.26) together prove (3.24).
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3.4 Step 4 (Proof of Theorems 1.5, 1.6 and Corollary 1.7)

We now combine Steps 1–3 above to construct solutions to the infinite dimensional
SDEs (3.22) which converge in Lp(Ω) to the unique solution u(t, x) to SHE (1.1) with
rough initial data and driven by Gaussian noise whose spatial spectral measure only
satisfies Dalang’s condition (1.6). Let us fix arbitrary t > 0, x ∈ Rd and p ≥ 2.

Step 1 shows that there exist a solution uε1,ε′1(t, x) to (1.1) with bounded initial data
(see Lemma 3.2) and driven by Gaussian noise whose spatial spectral measure satisfies
the strengthened Dalang’s condition (2.7) with α = 1 such that

lim
ε′1→0+

lim
ε1→0+

‖u(t, x)− uε1,ε′1(t, x)‖p = 0, (by Lemma 3.1)

where ε1 (resp. ε′1) refers to the mollification for the noise (resp. the initial data) as in
part (2) (resp. part (1)) of Lemma 3.1.

Step 2 now implies that there exists a strong solution uε1,ε′1,ε2(t, x) to (3.15) such that

lim
ε2→0+

∣∣∣∣uε1,ε′1(t, x)− uε1,ε′1,ε2(t, x)
∣∣∣∣
p

= 0. (by Lemma 3.4)

Step 3 shows that there exists a solution uδε1,ε′1,ε2
(t, [x]δ) to the infinite dimensional

SDE (3.22) such that

lim
δ→0+

∣∣∣∣∣∣uε1,ε′1,ε2(t, x)− uδε1,ε′1,ε2(t, [x]δ)
∣∣∣∣∣∣
p

= 0. (by Lemma 3.5)

Now it is easy to check that (3.22) is of the form (1.21), i.e., Assumption 1.8 is
satisfied. In particular, part (iv) of Assumption 1.8 is satisfied thanks to Lemma 3.2.
Thus, an application of Theorems 1.11 and 1.12 completes the proof of Theorems 1.5
and 1.6. Note that the two cases, namely, the multiple-time comparison over F[C2,v

p,+] or

F[C2,v
b,−] and the single-time comparison over F[C2,v

p ], are treated separately in the proofs
of Theorems 1.11 and 1.12 below.

It remains to prove Corollary 1.7. Under condition (i), there exists some ε0 > 0

such that f1([−ε0, ε0]d) = f2([−ε0, ε0]d), which, together with the fact that f1 − f2 is a
nonnegative measure, imply that for all ε ∈ (0, ε0], f ε,ε1 (0) = f ε,ε2 (0) and f ε,ε1 (x)−f ε,ε2 (x) ≥ 0

for all x ∈ Rd where f ε,εi is defined in Lemma 3.1. Thus, the result is a consequence of the
approximation procedure and Corollary 1.13. Under condition (ii), since f` ∈ C2

b (Rd;R+),
` = 1, 2, f` have to satisfy the properties in (3.9). Hence, in Step 1, we do not need to
mollify the noise, or equivalently, we could set ε1 = 0. We keep the approximations. Then
one can apply Corollary 1.13 to conclude this case. This proves Corollary 1.7.

4 Stochastic comparison principles for interacting diffusions

In this section, we will study the interacting diffusion equations (1.21) and prove
Theorems 1.10, 1.11, 1.12, 1.15, and Corollary 1.13.

4.1 Existence and uniqueness (Proof of Theorem 1.10)

Proof of Theorem 1.10. To show the existence of a solution, we use the standard Picard
iteration. For n = 0, set U (0)(t, i) := u0(i) and for any n ≥ 1, define recursively
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U (n+1)(t, i) =u0(i) + κ

∫ t

0

∑
j∈K

pi,j

(
U (n)(s, j)− U (n)(s, i)

)
ds+

∫ t

0

ρ
(
U (n)(s, i)

)
dMi(s)

=:u0(i) + In(t, i) +Rn(t, i). (4.1)

Choose and fix an arbitrary integer k ≥ 2. Without loss of generality, we may assume k
is an even integer. We first show that all U (n)(t, ·)’s are in `k(K) almost surely for any
t ≥ 0. For any random field Z(t, i), define

Nβ,k(Z) := sup
t≥0

e−βtE
(
‖Z(t, ·)‖k`k(K)

)
, β ≥ 0.

Note that N 1/k
β,k (Z) is a norm on the random field. Then by the Minkowski inequality,

Nβ,k
(
U (n+1)

)
≤
(
N 1/k
β,k (u0) +N 1/k

β,k (In) +N 1/k
β,k (Rn)

)k
≤ 3k−1 (Nβ,k(u0) +Nβ,k(In) +Nβ,k(Rn)) . (4.2)

We will compute the three N 1/k
β,k (·) norms in the right-hand side of (4.2). It is clear that

Nβ,k(u0) = ||u0||k`k(K) . (4.3)

As for Nβ,k(In), because k is even, we have that

∑
i∈K

E


∣∣∣∣∣∣
∫ t

0

∑
j∈K

pi,j

[
U (n)(s, j)− U (n)(s, i)

]
ds

∣∣∣∣∣∣
k


=
∑
i∈K

E

∫ t

0

ds1 · · ·
∫ t

0

dsk
∑
j1∈K

· · ·
∑
jk∈K

k∏
`=1

pi,j`

[
U (n)(s`, j`)− U (n)(s`, i)

]

=
∑
i∈K

E

∫ t

0

ds1e
βs1/k · · ·

∫ t

0

dske
βsk/k

∑
j1∈K

· · ·
∑
jk∈K

(
k∏
`=1

pi,j`

)

×
k∏

`′=1

e−βs`′/k
[
U (n)(s`′ , j`′)− U (n)(s`′ , i)

]
.

By the inequality
∏k
i=1 ai ≤ (ak1 + · · ·+ akk)/k applied to the product over `′, we see that

k∏
`′=1

e−βs`′/k
[
U (n)(s`′ , j`′)− U (n)(s`′ , i)

]

≤ 1

k

k∑
`′=1

(
e−βs`′

[
U (n)(s`′ , j`′)− U (n)(s`′ , i)

]k)

≤ 2k−1

k

k∑
`′=1

(
e−βs`′

[
U (n)(s`′ , j`′)

k + U (n)(s`′ , i)
k
])
.
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Hence,

∑
i∈K

E


∣∣∣∣∣∣
∫ t

0

∑
j∈K

pi,j

[
U (n)(s, j)− U (n)(s, i)

]
ds

∣∣∣∣∣∣
k


≤2k−1

k

k∑
`′=1

∫ t

0

ds1e
βs1/k · · ·

∫ t

0

dske
βsk/k

∑
i∈K

∑
j1∈K

· · ·
∑
jk∈K

(
k∏
`=1

pi,j`

)

×
[
e−βs`′E

(
U (n)(s`′ , j`′)

k
)

+ e−βs`′E
(
U (n)(s`′ , i)

k
)]

≤2k−1

k
(1 + Λ)

k∑
`′=1

∫ t

0

ds1e
βs1/k · · ·

∫ t

0

dske
βsk/k

[
e−βs`′E

(∣∣∣∣∣∣U (n)(s`′ , ·)
∣∣∣∣∣∣k
`k(K)

)]

=
2k−1

k
(1 + Λ)Nβ,k

(
U (n)

) k∑
`′=1

∫ t

0

ds1e
βs1/k · · ·

∫ t

0

dske
βsk/k

≤2k−1(1 + Λ)Nβ,k
(
U (n)

)(k
β

)k
etβ ,

where we have used the assumption (1.22) and the fact that
∑
j∈K pi,j = 1. There-

fore,

Nβ,k(In) ≤ 1 + Λ

2

(
2κk

β

)k
Nβ,k

(
U (n)

)
. (4.4)

Now let us consider Nβ,k(Rn). By the Burkholder-Davis-Gundy inequality, we have
that

E

(∣∣∣∣∫ t

0

ρ
(
U (n)(s, i)

)
dMi(s)

∣∣∣∣k
)

≤ ckE

([∫ t

0

ρ
(
U (n)(s, i)

)2
γ(0)ds

]k/2)

≤ ck Lipkρ γ(0)k/2
∫ t

0

ds1 · · ·
∫ t

0

dsk/2E

k/2∏
`=1

U (n)(s`, i)
2

 ,

where ck is some universal constant and we have used the fact that k is an even integer.
By the same arguments as above,

∫ t

0

ds1 · · ·
∫ t

0

dsk/2E

k/2∏
`=1

U (n)(s`, i)
2


=

∫ t

0

ds1e
2βs1/k · · ·

∫ t

0

dsk/2e
2βsk/2/kE

k/2∏
`=1

e−2βs`/kU (n)(s`, i)
2


≤2

k

∫ t

0

ds1e
2βs1/k · · ·

∫ t

0

dsk/2e
2βsk/2/k

k/2∑
`=1

e−βs`E
(
U (n)(s`, i)

k
)
.
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Thus,

∑
i∈K

E

∣∣∣∣∫ t

0

ρ
(
U (n)(s, i)

)
dMi(s)

∣∣∣∣k

≤ ck Lipkρ γ(0)k/2
2

k

∫ t

0

ds1e
2βs1/k · · ·

∫ t

0

dsk/2e
2βsk/2/k

k/2∑
`=1

e−βs` E

(∣∣∣∣∣∣U (n)(s`, ·)
∣∣∣∣∣∣k
`k(K)

)
≤ ck Lipkρ γ(0)k/2Nβ,k

(
U (n)

)∫ t

0

ds1e
2βs1/k · · ·

∫ t

0

dsk/2e
2βsk/2/k

= ck Lipkρ γ(0)k/2Nβ,k
(
U (n)

)( k

2β

)k/2
eβt,

which implies that

Nβ,k(Rn) ≤ ck Lipkρ γ(0)k/2
(
k

2β

)k/2
Nβ,k

(
U (n)

)
. (4.5)

Putting (4.3), (4.4) and (4.5) back to (4.2) shows that

Nβ,k
(
U (n+1)

)
≤ 3k−1 ||u0||k`k(K) + Ck(β)Nβ,k

(
U (n)

)
,

where

Ck(β) := 3k−1

[
1 + Λ

2

(
2κk

β

)k
+ ck Lipkρ γ(0)k/2

(
k

2β

)k/2]
. (4.6)

It is clear that β 7→ Ck(β) is a strictly decreasing function for all β ≥ 0. Therefore, by
choosing β∗ to be the unique positive solution to the equation Ck(β) = 1/2, we have
that

Nβ∗,k
(
U (n+1)

)
≤3k−1 ||u0||k`k(K) +

1

2
Nβ∗,k

(
U (n)

)
≤3k−1 ||u0||k`k(K)

(
1 +

1

2
+ · · ·

)
≤3k ||u0||k`k(K) . (4.7)

Therefore, we have that

sup
n≥0

sup
0≤t≤T

E

(∣∣∣∣∣∣U (n)(t, ·)
∣∣∣∣∣∣k
`k(K)

)
≤ 3k‖u0‖k`k(K)e

β∗T . (4.8)

This implies that U (n)(t, ·) for all n ≥ 1 is well-defined and in L∞
(
[0, T ];Lk(Ω; `k(K))

)
.

Let V (n)(t, i) := U (n+1)(t, i) − U (n)(t, i) for n ≥ 0. Since ρ is globally Lipschitz with
Lipschitz constant Lipρ, following the same process as above, we can have

Nβ∗,k
(
V (n)

)
≤ 1

2
Nβ∗,k

(
V (n−1)

)
≤ · · · ≤ 1

2n
Nβ∗,k

(
V (0)

)
.

Since V (0) = U (1) − u0, we see that

Nβ∗,k
(
V (0)

)
≤
[
N 1/k
β∗,k

(
U (1)

)
+N 1/k

β∗,k
(u0)

]k
≤2k−1Nβ∗,k

(
U (1)

)
+ 2k−1 ||u0||k`k(K)

≤2k−1
(
3k + 1

)
||u0||k`k(K) .
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Thus,
∑∞
n=0N

1/k
β∗,k

(
V (n)

)
< ∞, which implies that

{
U (n)

}
n∈N is a Cauchy sequence in

the Banach space with the norm N 1/k
β∗,k

(·). As a consequence,

u := lim
n→∞

U (n) in L∞
(
[0, T ];Lk(Ω; `k(K))

)
.

Fatou’s lemma and (4.8) imply that

sup
0≤t≤T

E
(
||U(t, ·)||k`k(K)

)
≤ 3k‖u0‖k`k(K) exp (β∗T ) , (4.9)

which, together with Lemma 4.1 below, proves the second inequality in (1.26). The first
inequality in (1.26) is due to the trivial fact that

sup
i∈K
|U(t, i)|p ≤

∑
i∈K
|U(t, i)|p, a.s. (4.10)

In addition, using the convergence from U (n) to U in L∞
(
[0, T ];L2(Ω; `2(K))

)
, it is easy

to see that U satisfies (1.24). The proof of uniqueness follows from a standard argument.
We will not repeat here. This completes the proof of Theorem 1.10.

Lemma 4.1. Let Ck(β) be the constant defined in (4.6) and β∗ be the positive solution
to the equation Ck(β) = 1/2. Then for some constant C = C(κ, γ(0),Lipρ,Λ), it holds
that β∗ ≤ Ck2 for all k ≥ 2.

Proof. We first prove the symmetric case, i.e., pi,j = pj,i, in which case, Λ ≡ 1. Note
that the constant ck in the Burkholder-Davis-Gundy inequality can be chosen to be
ck = 2kkk/2 (see, e.g., [4]). In order to solve the equation Ck(β) = 1/2, set x = β−k/2.
Then equivalently, x solves

(6κk)
k
x2 +

(
18γ(0)k2 Lip2

ρ

)k/2
x− 3/2 = 0.

By finding the positive solution and then taking the power of −2/k, we see that

β∗ =2× 31−2/k
([

3γk2 Lip2
ρ

]k/2
+

√
6(κk)k +

[
3γk2 Lip2

ρ

]k)2/k

≤2× 31−2/k
(

2
[
3γk2 Lip2

ρ

]k/2
+
√

6(κk)k/2
)2/k

≤2× 31−2/k
(

22/k3γk2 Lip2
ρ +61/kκk

)
≤6
(
3γk2 Lip2

ρ +κk
)
,

where we have applied twice the subadditivity property of the function R+ 3 x 7→ xα

for α ∈ (0, 1]. Therefore, one can find a constant C depending on κ, γ(0) and Lipρ such
that β∗ ≤ Ck2 for all k ≥ 2. Finally, for the general case, the above quadratic equation
becomes

1 + Λ

2
(6κk)

k
x2 +

(
18γ(0)k2 Lip2

ρ

)k/2
x− 3/2 = 0.

The rest arguments remain the same. This proves Lemma 4.1.

4.2 Several approximations

In this subsection, we will reduce the SDE (1.21) to the case in Theorem 1.15. We will
need to approximate the solution to (1.21) in the following two cases: The first case is to
approximate (1.21) by that with a C2

c (R+) diffusion coefficient. This is covered in two
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steps through Propositions 4.2 and 4.3 below. The second case is to approximate (1.21)
by a finite dimensional SDE and this is covered by Proposition 4.4 below.

Case 1. Define

ρN (x) := ρ(x)1I{|x|≤N} + ρ (sgn(x)N) (2− |x|/N) 1I{N≤|x|≤2N}. (4.11)

Since ρ is a globally Lipschitz continuous function with the Lipschitz constant Lipρ and
ρ(0) = 0, it is easy to see that ρN is also globally Lipschitz such that

LipρN ≤ Lipρ and ρN (0) = 0, (4.12)

which imply that |ρN (x)| ≤ Lipρ |x|. Consider


dUN (t, i) = κ

∑
j∈K

pi,j (UN (t, j)− UN (t, i)) dt+ ρN (UN (t, i))dMi(t), i ∈ K, t > 0,

UN (0, i) = u0(i) , i ∈ K.
(4.13)

The existence and uniqueness of a strong solution in the space (1.25) follows from
Theorem 1.10.

Proposition 4.2. Let U(t, i) and UN (t, i) be solutions to (1.21) and (4.13), respectively,
with the same initial data u0(·) ∈ `2(K). Then, for any T > 0 and k ≥ 2, we have that

sup
t∈[0,T ]

E

(
sup
i∈K
|U(t, i)− UN (t, i)|k

)
≤ sup
t∈[0,T ]

E
(
||U(t, i)− UN (t, i)||k`k(K)

)
→ 0, (4.14)

as N → +∞.

Proof. Let T ≥ t ≥ 0 and fix k ≥ 2. Without loss of generality, we may assume that k is
an even integer. Let VN (t, i) := U(t, i)− UN (t, i). Then, VN (t, i) is a solution to

dVN (t, i) = κ
∑
j∈K

pi,jVN (t, j)dt− κVN (t, i)dt+ (ρN (U(t, i))− ρN (UN (t, i))) dMi(t)

+ (ρ(U(t, i))− ρN (U(t, i))) dMi(t).

By Itô’s formula

dV kN (t, i) =κkV k−1N (t, i)
∑
j∈K

pi,jVN (t, j)dt− κkV kN (t, i)dt

+ kV k−1N (t, i) (ρN (U(t, i))− ρN (UN (t, i))) dMi(t)

+ kV k−1N (t, i) (ρ(U(t, i))− ρN (U(t, i))) dMi(t)

+
k(k − 1)

2
γ(0)V k−2N (t, i) (ρN (U(t, i))− ρN (UN (t, i)))

2
dt

+
k(k − 1)

2
γ(0)V k−2N (t, i) (ρ(U(t, i))− ρN (U(t, i)))

2
dt.

By the following Young’s inequality for product

kabk−1 ≤ ak + (k − 1)bk, for all a, b ≥ 0 and k ≥ 2, (4.15)

we see that

∑
i∈K

∣∣∣∣∣∣κkV k−1N (t, i)
∑
j∈K

pi,jVN (t, j)

∣∣∣∣∣∣ ≤ κ
∑
i∈K

∑
j∈K

pi,j
(
V kN (t, j) + (k − 1)V kN (t, i)

)
≤ κ(k − 1 + Λ) ||VN (t, ·)||k`k(K) ,
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where we have used the assumption (1.22) and the fact that
∑
j∈K pi,j = 1.

By (4.12),∑
i∈K

V k−2N (t, i) (ρN (U(t, i))− ρN (UN (t, i)))
2 ≤ Lip2

ρ ||VN (t, ·)||k`k(K) .

By Young’s inequality (4.15) with k/2, we see that

k

2
(ρ(U(t, i))− ρN (U(t, i)))

2
V k−2N (t, i) ≤ (ρ(U(t, i))− ρN (U(t, i)))

k
+
k − 2

2
V kN (t, i).

Hence,∑
i∈K

k(k − 1)

2
γ(0)V k−2N (t, i) (ρ(U(t, i))− ρN (U(t, i)))

2

≤(k − 1)γ(0) ||ρ(U(t, ·))− ρN (U(t, ·))||k`k(K) +
(k − 1)(k − 2)

2
γ(0)

∣∣∣∣V kN (t, ·)
∣∣∣∣k
`k(K)

.

Therefore,

E
(
||VN (t, ·)||k`k(K)

)
≤ C1

∫ t

0

E
(
||VN (s, ·)||k`k(K)

)
ds

+ C2

∫ t

0

E
(
||ρ(U(s, ·))− ρN (U(s, ·))||k`k(K)

)
ds,

where the two constants can be chosen as follows:

C1 := 2κ(k − 1 + Λ) +
k(k − 1)

2
γ(0) Lip2

ρ +
(k − 1)(k − 2)

2
γ(0) and C2 := (k − 1)γ(0).

By setting WN (t) := sups∈[0,t]E
(
||VN (s, ·)||k`k(K)

)
, we see that

WN (t) ≤ C1

∫ t

0

WN (s)ds+ C2

∫ t

0

sup
s′∈[0,s]

E
(
||ρ(U(s′, ·))− ρN (U(s′, ·))||k`k(K)

)
ds. (4.16)

Because |ρN (x)| ≤ Lipρ |x| for all x ∈ R, the moment bound (1.26) implies that

sup
0≤s≤t

E
(
||ρ(U(s, ·))− ρN (U(s, ·))||k`k(K)

)
≤ sup

0≤s≤t
E

(∑
i∈K
|ρ(U(s, i))− ρN (U(s, i))|k 1I{|U(s,i)|≥N}

)

≤2k−1 Lipkρ sup
0≤s≤t

E

(∑
i∈K
|U(s, i)|k1{|U(s,i)|>N}

)
→ 0, as N → +∞.

On the other hand, the above inequality shows that

sup
0≤s≤t

E

(∑
i∈K
|ρ(U(s, i))− ρN (U(s, i))|k

)
≤2k−1 Lipkρ sup

0≤s≤t
E
(
||U(s, ·)||k`k(K)

)
≤ CT ,

for all t ∈ [0, T ]. Hence, the second term on the right-hand side of (4.16) converges to
zero as N → ∞ by the dominated convergence theorem. Moreover, as a function of t,
this term is in L1([0, T ]). Therefore, an application of Gronwall’s lemma completes the
proof.
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Thanks to Proposition 4.2, we can now assume that ρ is a function with compact
support. Let φ ∈ C∞c (R) with

∫
R
φ(x)dx = 1 and let φε(x) = ε−1φ(x/ε). Define ρε(x) :=

φε ∗ ρ(x). Then, it is easy to see that ρε ∈ C∞c and ρε is globally Lipschitz with the same
Lipschitz constant Lipρ as for ρ. Consider dUε(t, i) = κ

∑
j∈K

pi,j (Uε(t, j)− Uε(t, i)) dt+ ρε(uε(t, i))dMi(t), i ∈ K, t > 0,

Uε(0, i) = u0(i) , i ∈ K.
(4.17)

The existence and uniqueness of a strong solution in the space (1.25) comes from
Theorem 1.10.

Proposition 4.3. Let U(t, i) and Uε(t, i) be solutions to (1.21) and (4.17), respectively,
with the same initial data u0(·) ∈ `2(K) and with ρ being a continuous function with
compact support. Then, for any T > 0 and k ≥ 2, it holds that

sup
t∈[0,T ]

E

(
sup
i∈K
|U(t, i)− Uε(t, i)|k

)
≤ sup
t∈[0,T ]

E
(
||U(t, ·)− Uε(t, ·)||k`k(K)

)
→ 0, (4.18)

as ε→ 0+.

Proof. Since ρ is a continuous function with compact support, we have that ||ρε||L∞(R) ≤
||ρ||L∞(R) < ∞. On the other hand, since both ρ and ρε are continuous functions with
compact support, ρε converges to ρ uniformly on any compact set, i.e.,

lim
ε→0

sup
0≤s≤t

sup
i∈K
|ρ(U(s, i))− ρε(U(s, i))|k = 0.

Hence, the bounded convergence theorem implies that

sup
0≤s≤t

E

(
sup
i∈K
|ρ(U(s, i))− ρε(U(s, i))|k

)
≤ E

(
sup

0≤s≤t
sup
i∈K
|ρ(U(s, i))− ρε(U(s, i))|k

)
→ 0,

as ε→ 0+. Therefore, one can follow the same arguments as those in proposition 4.2 to
complete the proof.

Case 2. It remains to show the approximation by a finite-dimensional SDE when K has
countably infinite many elements. Let Ki be subsets of K with finite cardinalities such
that K1 ⊂ K2 ⊂ · · · ↑ K. Consider the following finite system of interacting diffusions:



dUm(t, i) =κ
∑
j∈Km

pi,j Um(t, j) dt− κUm(t, i) dt

+ ρ (Um(t, i))) dMi(t),

i ∈ Km, t > 0,

Um(0, i) = u0(i) , i ∈ Km,

Um(t, i) = u0(i) , i ∈ K \Km, t ≥ 0.

(4.19)

The existence and uniqueness of a strong solution to (4.19) is a standard result.
Indeed, one may also follow the proof of Theorem 1.10 to show the existence of a unique
strong solution.

Proposition 4.4. Let U(t, i) and Um(t, i) be solutions to (1.21) and (4.19), respectively,
with the same diffusion coefficient ρ which is assumed to be globally Lipschitz continuous.
Then, for any T > 0 and k ≥ 2, it holds that

sup
t∈[0,T ]

E

(
sup
i∈K
|Um(t, i)− U(t, i)|k

)
≤ sup
t∈[0,T ]

E
(
‖Um(t, ·)− U(t, ·)‖k`k(K)

)
→ 0, (4.20)

as m→ +∞.
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Proof. Let T ≥ t ≥ 0 and fix k ≥ 2. Without loss of generality, we assume that k is an
even integer. Set Vm(t, i) := U(t, i)− Um(t, i). Then, Vm(t, i) solves the following SDE

dVm(t, i) =


κ
∑
j∈Km

pi,jVm(t, j)dt− κVm(t, i)dt

+ (ρ(U(t, i))− ρ (Um(t, i))) dMi(t) +
∑

j∈K\Km

pi,jU(t, j)dt,
if i ∈ Km,

dU(t, i) = the r.h.s. of the first equation in (1.21), otherwise.

By Itô’s formula, we see that, for any i ∈ Km,

dV km(t, i) =kκ
∑
j∈Km

pi,jV
k−1
m (t, i)Vm(t, j)dt− kκV km(t, i)dt

+ kV k−1m (t, i) (ρ(U(t, i))− ρ (Um(t, i))) dMi(t)

+ kV k−1m (t, i)
∑

j∈K\Km

pi,jU(t, j)dt

+
k(k − 1)

2
V k−2m (t, i)γ(0) (ρ(U(t, i))− ρ (Um(t, i)))

2
dt.

Notice that
||Vm(t, ·)||k`k(K) = ||Vm(t, ·)||k`k(Km) + ||Vm(t, ·)||k`k(K\Km) .

It is clear that

||Vm(t, ·)||`k(K\Km) = ||U(t, ·)− u0(·)||`k(K\Km) ≤ ||U(t, ·)||`k(K\Km) + ||u0(·)||`k(K\Km) .

Theorem 1.10 says that U(t, ·) ∈ `2(K) ⊆ `k(K) a.s. for all t ≥ 0, which implies that∑
j∈K\Km

U(t, j)k → 0 as m→∞ a.s.

Therefore, thanks to (1.26), the monotone convergence theorem implies that

lim
m→∞

∫ t

0

sup
s′∈[0,s]

E

 ∑
j∈K\Km

U(s′, j)k

 ds = 0. (4.21)

In addition, since u0(·) ∈ `2(K) ⊆ `k(K), we can get

lim
m→∞

∫ t

0

sup
s′∈[0,s]

E
(
||Vm(s′, ·)||k`k(K\Km)

)
ds = 0. (4.22)

As for ||Vm(t, ·)||k`k(Km), by Young’s inequality (4.15), we have that

k
∑
i∈Km

∑
j∈Km

pi,j
∣∣V k−1m (t, i)Vm(t, j)

∣∣ ≤∑
i∈K

∑
j∈K

pi,jV
k
m(t, j) + (k − 1)

∑
i∈K

∑
j∈K

pi,jV
k
m(t, i)

≤ (k − 1 + Λ) ||Vm(t, ·)||k`k(K) ,

where we have used the assumption (1.22) and the fact that
∑
j∈K pi,j = 1. Similarly,

by (4.15),

∑
i∈Km

∣∣∣∣∣∣kV k−1m (t, i)
∑

j∈K\Km

pi,jU(t, j)

∣∣∣∣∣∣ ≤ (k − 1) ‖Vm(t, ·)‖k`k(K) +
∑
i∈K

 ∑
j∈K\Km

pi,jU(t, j)

k ,
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where, by Hölder inequality and the fact that
∑
j∈K\Km pi,j ≤ 1,

∑
i∈K

 ∑
j∈K\Km

pi,jU(t, j)

k ≤∑
i∈K

∑
j∈K\Km

pi,jU(t, j)k ≤ Λ
∑

j∈K\Km

U(t, j)k.

Now combine things together and use the fact that ρ is globally Lipschitz to see that

E
(
‖Vm(t, ·)‖k`k(K)

)
=E

(
‖Vm(t, ·)‖k`k(Km)

)
+ E

(
‖Vm(t, ·)‖k`k(K\Km)

)
≤
(
κ(k − 1 + Λ) +

k(k − 1)

2
γ(0) Lip2

ρ

)∫ t

0

E
(
‖Vm(s, ·)‖k`k(K)

)
ds

+ Λ

∫ t

0

E

 ∑
j∈K\Km

U(s, j)k

 ds+

∫ t

0

E
(
||Vm(s, ·)||k`k(K\Km)

)
ds.

Thanks to (4.21) and (4.22), an application of Gronwall’s lemma to

Wm(t) := sup
s∈[0,t]

E
(
||Vm(s, ·)||k`k(K)

)
proves the proposition.

4.3 Comparison theorems for finite interacting diffusions

In this subsection, we will prove Theorems 1.15 and 1.16. Before the proof, we first
make a remark to comment the difference of our results with those in Cox, Fleischmann
and Greven [10].

Remark 4.5. Here is a detailed comparison of our results — both Theorem 1.11 and
Theorem 1.15 — with Theorem 1 of Cox, Fleischmann and Greven [10]. Let us first
mention that F and F0 in [10] correspond to F[C2,v

b ] and F[C2,v
b,±], respectively, in our

paper.

(a) For the infinite dimensional case, Theorem 1.11 is able to cover a bigger function
cone, namely, F[C2,v

p,+] and F[C2,v
p ] in contrast with F[C2,v

b,+] and F[C2,v
b ], respectively,

in [10]; see (1.18) for relations of these function spaces. In particular, the multiple-
time comparison result in Theorem 1.11 works well for the moment functions FM .
However, in order to apply the same comparison results in [10] to the moment
functions, one needs to restrict the moment functions to bounded subinterval I ⊂ R+,
i.e., one needs to replace RK+ in the definition (1.16) by IK ; see Example 6 of [10]. We
can make this extension thanks to our stronger approximation results in Section 4.2,
namely, Propositions 4.2, 4.3 and 4.4.

(b) For the case of finite dimensional SDE with C2
c (R+) diffusion coefficient, Theo-

rem 1.15 corresponds to Sections 2.1 – 2.4 of [10]. By stating our results in terms of
F[C2,v], F[C2,v

+ ] and F[C2,v
− ], our results are slightly more general, even thought this

improvement is not essential because each component of the the diffusion process
will live in the compact support of ρ. The major difference here (and also for infinite
dimensional SDE case) is that in [10], only the case of independent Brownian motions
was studied. So we need to change the infinitesimal generator from

G` = κ
∑

1≤i,j≤d

(pi,j − δi,j)xjDi +
1

2

∑
1≤i≤d

ρ2`(xi)D
2
i , ` = 1, 2, (4.23)

to (4.26) below. This change won’t bring any new difficulties. The original proof in
[10] works line by line.
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Although Theorem 1.15 can be proved in the same way as those in Sections 2.1–2.4 of
[10] with only minor changes as is explained in part (b) of the above remark, considering
that Theorem 1.16 is new, we will streamline the proof of both results altogether. This
will also serve as an alternative presentation of the proofs in [10].

Proof of Theorems 1.15 and 1.16. Let the index set K be {1, · · · , d}. Under both As-
sumptions 1.8 and 1.14, we have a finite dimensional SDE with ρ ∈ C2

c (R+). Hence, it
is well-known that there exists a unique strong solution U(t, ·) ∈ Rd. For ` ∈ {1, 2}, let
U` be the unique strong solution either corresponding to ρ` in case of Theorem 1.11 or
to γ` in case of Theorem 1.12. In the following, we will slightly abuse the notation for
the expectation. We may put subscript to denote the initial data and where there is no
subscript, the initial data is u0(·).

Now we need to prove the following two statements:

1. For any integer m ≥ 1, 0 < t1 < · · · < tm <∞, and

either F1, · · ·Fm ∈ F{1,··· ,d}[C2,v
− ] or F1, · · ·Fm ∈ F{1,··· ,d}[C2,v

+ ],

it holds that

E

[
m∏
`=1

F` (U1(t`, ·))

]
≥ E

[
m∏
`=1

F` (U2(t`, ·))

]
. (4.24)

2. If F is only in F{1,··· ,d}[C2,v], then for any t ≥ 0,

E [F (U1(t, ·))] ≥ E [F (U2(t, ·))] . (4.25)

Step 1. We start by proving (4.25) for F ∈ F{1,··· ,d}[C2,v], which will cover both (4.25)
and (4.24) when all t` are the same.

For ` ∈ {1, 2}, let G` be the infinitesimal generator for u`(t, ·) ∈ Rd, that is,

G` = κ
∑

1≤i,j≤d

(pi,j − δi,j)xjDi +


1

2

∑
1≤i,j≤d

ρ`(xi)ρ`(xj)γ(i− j)DiDj , Theorem 1.15,

1

2

∑
1≤i,j≤d

ρ(xi)ρ(xj)γ`(i− j)DiDj , Theorem 1.16.

(4.26)

Let T (`)
t be the corresponding semigroup, namely,

T
(`)
t F (x) := Ex [F (U`(t, ·))] for all x ∈ Rd. (4.27)

Then, (4.25) is equivalent to showing

T
(1)
t F (x) ≥ T (2)

t F (x) for all x ∈ Rd. (4.28)

By the integration by parts formula,

T
(1)
t − T (2)

t =

∫ t

0

T (1)
s

[
G(1) −G(2)

]
T

(2)
t−s ds,

where

G(1) −G(2) =


1

2

∑
1≤i,j≤d

[ρ1(xi)ρ1(xj)− ρ2(xi)ρ2(xj)] γ(i− j)DiDj , Theorem 1.15,

1

2

∑
1≤i,j≤d

ρ(xi)ρ(xj) [γ1(i− j)− γ2(i− j)]DiDj , Theorem 1.16.
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It is clear that T (`)
t preserves positivity, i.e., T (`)

t g ≥ 0 whenever g ≥ 0. It is also known
(see, e.g., Theorem 5.6.1 in [15] that under our assumption on ρ` or ρ,

T
(`)
t F ∈ C2(Rd) (4.29)

and T
(`)
t F is continuous in t. Our assumptions on ρ’s and γ’s assure that for all i, j ∈

{1, · · · , d} and all xi, xj ∈ R+,ρ1(xi)ρ1(xj)− ρ2(xi)ρ2(xj) ≥ 0, Theorem 1.15,

ρ(xi)ρ(xj) [γ1(i− j)− γ2(i− j)] ≥ 0, Theorem 1.16.

Hence, we only need to show that DiDjT
(2)
t F (z) ≥ 0 for all 1 ≤ i, j ≤ d, t > 0 and z ∈ Rd+.

For simplicity, we define U(t, ·) := U (2)(t, ·), ρ := ρ2, G := G(2) and Tt := T
(2)
t , and show

that
DiDjTtF (z) ≥ 0 for all 1 ≤ i, j ≤ d, t > 0 and z ∈ Rd+. (4.30)

Step 2. In this step, we will use Trotter’s product formula (see, e.g., Corollary 1.6.7
of [12]) to prove (4.30). Let T (κ,ρ)

t denote the semigroup of the d-dimensional diffusion
process in (1.21) with drift parameter κ and diffusion coefficient ρ. Trotter’s product

formula suggests to study the limit of the semigroup
[
T

(κ,0)
t/k T

(0,ρ)
t/k

]k
as k →∞.

We first study the semigroup T
(0,ρ)
t , i.e., the case where κ = 0. In this case, (1.21)

becomes {
dU(t, i) = ρ (U(t, i)) dMi(t), t > 0, i = 1, · · · , d,
U(0, i) = u0(i), i = 1, · · · , d.

(4.31)

Although U(t, i) and U(t, j) are not independent, they interact only through the ran-
dom environment Mi(t) when i 6= j. Hence, in (4.31) each component U(t, i) of
(U(t, 1), . . . , U(t, d)) has its own equation. Following Cox et al [10], for i, j ∈ {1, · · · , d},
and h1, h2 > 0, denote

u2 = z + h2ej u12 = z + h1ei + h2ej
u0 = z u1 = z + h1ei,

where ei is the ith unit vector in Rd and z ∈ Rd+. To avoid triviality, we assume that
z ∈ supp(ρ)d. When i 6= j, (u0, u1, u2, u12) forms a rectangle in the (i, j)-th directions;
when i = j, it forms nondecreasing sequence in the i-th direction: u0 ≤ u1 ∧ u2 ≤
u1 ∨u2 ≤ u12 (here, the inequality u ≤ v for u, v ∈ Rd means that each component ui ≤ vi
for all 1 ≤ i ≤ d). Let U0, U1, U2, U12 be the solutions to (4.31) with the initial condition
u0, u1, u2, u12, respectively, when i 6= j and with u0, u1∧u2, u1∨u2, u12, respectively, when
i = j. By the classical comparison principle for one-dimensional SDEs (see e.g., either
[18, Theorem VI.1.1] or [28, Theorem IX.3.7]), we have that with probability one, for all
t ≥ 0,

U2(t) ≤ U12(t)

≤ ≤

U0(t) ≤ U1(t)

(in case of i 6= j)

U0(t) ≤ U1(t) ≤ U2(t) ≤ U12(t). (in case of i = j)

Now for F ∈ F[C2,v] we have that DiDjF ≥ 0 for all 1 ≤ i, j ≤ d. By noticing that

DiDjf ≥ 0 ⇐⇒ f(u12)− f(u2)− f(u1) + f(u0) ≥ 0 ∀h1, h2 > 0, (4.32)
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we see that [
F
(
U12(t)

)
− F

(
U2(t)

)]
−
[
F
(
U1(t)

)
− F

(
U0(t)

)]
≥ 0. (4.33)

Notice that the expectation of the left-hand side of (4.33) is finite because ρ has compact
support and

max
i=1,··· ,d

U(t, i) ∈ supp(ρ), a.s.

Hence, we can take expectation on both sides of (4.33) to see that[
T

(0,ρ)
t F (u12)− T (0,ρ)

t F (u1)
]
−
[
T

(0,ρ)
t F (u2)− T (0,ρ)

t F (u0)
]
≥ 0

which, in view of (4.32), is nothing but (4.30) for T (0,ρ)
t . Therefore, we have proved (4.30)

for the case of F ∈ F[C2,v] and no drift (κ = 0). In other words, T (0,ρ)
t preserves the

function cone F[C2,v].

Next, we study the semigroup T (κ,0)
t , i.e., the case when κ > 0 but ρ ≡ 0 in (1.21). In

this case, the system is deterministic:{
dU(t, i) = κ

∑d
j=1(pi,j − δi,j)U(t, j)dt, t > 0, i = 1, · · · , d,

U(0, i) = u0(i), i = 1, · · · , d.
(4.34)

If we view U(t, ·) and the initial data u0(·) as column vectors in Rd and set A = (pi,j −
δi,j)1≤i,j≤d, then we have that U(t, ·) = exp(κAt)u0(·). Hence, for F ∈ F[C2,v] and z ∈ Rd+
(viewed as a column vector),

T
(κ,0)
t F (z) = F (exp(κAt)z)

and hence,

DiDjT
(κ,0)
t F (z) =

∑
1≤k,m≤d

Fk,m (exp(κAt)z) (exp(κAt))k,i (exp(κAt))m,j ≥ 0,

with Fk,m(z) = DkDmF (z), which proves (4.30) for this case. Therefore, T (κ,0)
t also

preserves the function cone F[C2,v].
Now we can apply Trotter’s product formula with C2(Rd+) as the core to see that

lim
k→∞

[
T

(κ,0)
t/k T

(0,ρ)
t/k

]k
F = T

(κ,ρ)
t F, ∀F ∈ F[C2,v].

By (4.29), the C2-property is preserved by this semigroup T
(κ,ρ)
t . The nonnegativity

of (4.30) is also preserved through the limit. Therefore, T (κ,ρ)
t preserves the function

cone F[C2,v]. This proves (4.25) for F ∈ F[C2,v] and (4.24) when all t` are the same.

Step 3. Notice that functions in F[C2,v] are not closed under multiplication; see
Example 5.1 below for one example. In order to work with multiple-time comparison
which requires multiplication of these functions, we have to restrict to a smaller cone of
convex functions. Since we already show in the previous step that both function cones
F[C2,v

+ ] and F[C2,v
− ] are closed under the semigroup T

(κ,ρ)
t , we need only to show the

preservation under multiplication and it is easy to see that both F[C2,v
+ ] and F[C2,v

− ] are

closed under multiplication. Indeed, if F,G ∈ F[C2,v
+ ], then

DiDj(FG) = G(DiDjF ) + F (DiDjG) + (DiF )(DjG) + (DjF )(DiG) ≥ 0 (4.35)
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because all terms F , G, DiF , DjF , DiG, DjG, DiDjF and DiDjG are nonnegative, the
monotonicity is clearly preserved under product. Hence, FG ∈ F[C2,v

+ ]. The case for

F[C2,v
− ] can be proved in the same way.

As a consequence, we claim that for any F1, · · · , Fm ∈ F[C2,v
+ ] (resp. F[C2,v

− ]) and
0 ≤ t1 < · · · < tm, the function

z 7→ Ez [F1(U(t1)) · · ·Fm(U(tm))] (4.36)

belongs to F[C2,v
+ ] (resp. F[C2,v

− ]). Indeed, the case m = 1 has been proved in the
previous step. Assume that this is true for m− 1. Now by the strong Markov property,
we see that

Ez [F1(U(t1)) · · ·Fm(U(tm))] = Ez
[
F1(U(t1))EU(t1) [F2(U(t2 − t1)) · · ·Fm(U(tm − t1))]

]
= T

(κ,ρ)
t1 [F1 G] (z)

where G(z) = Ez [F2(U(t2 − t1)) · · ·Fm(U(tm − t1))]. By induction assumption, G ∈
F[C2,v

+ ] (resp. F[C2,v
− ]) Since F[C2,v

+ ] (resp. F[C2,v
− ]) is closed under multiplication,

F1G ∈ F[C2,v
+ ] (resp. F[C2,v

− ]). This proves the claim in (4.36).

Step 4. Now we will prove (4.24) with m ≥ 2. We need only to show one case, say
F[C2,v

+ ]. The case m = 1 has been proved in Step 2. Suppose that (4.24) is true for m− 1.
For m, by the strong Markov property, for ` ∈ {1, 2}, we see that

E [F1(U`(t1, ·) · · ·Fm(U`(tm, ·)))] = E [F1(U`(t1, ·)G`(U`(t1, ·))]

where

G`(z) = Ez [F2(U`(t2 − t1, ·) · · ·Fm(U`(tm − t1, ·)))] .

By the induction assumption, G1(z) ≥ G2(z) for any z ∈ Rd+. Hence,

E [F1(U1(t1, ·) · · ·Fm(U1(tm, ·)))] =E [F1(U1(t1, ·)G1(U1(t1, ·))]
≥E [F1(U1(t1, ·)G2(U1(t1, ·))]
≥E [F1(U2(t1, ·)G2(U2(t1, ·))]
=E [F1(U2(t1, ·) · · ·Fm(U2(tm, ·)))]

Here we have used the fact that F1G2 ∈ F[C2,v
+ ] (see Step 3). This proves (4.24).

4.4 Proof of Theorems 1.11, 1.12 and Corollary 1.13

Now we are ready to prove Theorems 1.11 and 1.12.

Proof of Theorems 1.11 and 1.12. Propositions 4.2, 4.3 and 4.4 imply that the infinite
dimensional system of diffusions (1.21) can be approximated by finite dimensional
systems of diffusions with C2

c (R+)-diffusion coefficient. Then by passing to the limit
in the above approximations, the stochastic comparison statements can be extended
to those in Theorems 1.11 and 1.12. When we pass to the limit, some care is needed.
Indeed, by Propositions 4.2, 4.3 and 4.4, we can find Uε(t, i) such that

lim
ε↓0+

sup
t∈[0,T ]

E
[
||Uε(t, ·)− U(t, ·)||p`p(K)

]
= 0, ∀p ∈ N, T > 0, (4.37)

where U(t, ·) is the unique solution to (1.21) and Uε(t, ·) with ε fixed solves a finite-
dimensional SDE with C2

c (R+)-diffusion coefficient.
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Case I. We first consider the one-time comparison results over F ∈ F[C2,v
p ]. Because

F ∈ F[C2,v
p ], one can find m ∈ N \ {0} and distinct i1, · · · , im ∈ K such that, by the

mean-value theorem, we have that

|F (U(t, ·))− F (Uε(t, ·))| ≤ |5F (ξ)|
m∑
`=1

|U(t, i`)− Uε(t, i`)| , ξ := (1− c)U(t, ·) + cUε(t, ·),

where c ∈ (0, 1). For any β ≥ 1, by Cauchy-Schwartz inequality, we see that

||F (U(t, ·))− F (Uε(t, ·))||β ≤
∥∥ | 5 F (ξ)|

∥∥
2β

∣∣∣∣∣
∣∣∣∣∣
m∑
`=1

|U(t, i`)− Uε(t, i`)|

∣∣∣∣∣
∣∣∣∣∣
2β

.

By the growth condition (1.13), there are some constants C > 0 and k ∈ N such that

|5F (ξ)|2β ≤Cβ
(

1 + ||(1− c)U(t, ·) + cUε(t, ·)||2kβ`2kβ(K)

)
≤Cβ,k

(
1 + ||U(t, ·)||2kβ`2kβ(K) + ||Uε(t, ·)||2kβ`2kβ(K)

)
.

Hence, ∥∥ | 5 F (ξ)|
∥∥
2β
≤ C

(
1 + E

[
||U(t, ·)||2kβ`2kβ(K)

]
+ E

[
||Uε(t, ·)||2kβ`2kβ(K)

])1/(2β)
Thanks to (4.37),

sup
ε∈(0,1)

∥∥ | 5 F (ξ)|
∥∥
2β
< +∞.

On the other hand,∣∣∣∣∣
∣∣∣∣∣
m∑
`=1

|U(t, i`)− Uε(t, i`)|

∣∣∣∣∣
∣∣∣∣∣
2β

≤ CβE
[
||U(t, ·)− Uε(t, ·)||2β`2β(K)

]1/(2β)
→ 0, as ε ↓ 0+.

Hence, F (Uε(t, ·)) converges to F (U(t, ·)) in Lβ(Ω) for all β ≥ 1. The comparison results
will be carried thought the limit.

Case II. Now we consider the m-time comparison results with m ≥ 2. By telescoping
and the Hölder’s inequality, for any β ≥ 1,∣∣∣∣∣
∣∣∣∣∣
m∏
`=1

F`(U(t`, ·))−
m∏
`=1

F`(Uε(t`, ·))

∣∣∣∣∣
∣∣∣∣∣
β

=

∣∣∣∣∣
∣∣∣∣∣
m∑
k=1

[Fk(U(tk, ·))− Fk(Uε(tk, ·))]

(
k−1∏
`=1

F`(U(t`, ·))

)(
m∏

`=k+1

F`(Uε(t`, ·))

)∣∣∣∣∣
∣∣∣∣∣
β

≤
m∑
k=1

||Fk(U(tk, ·))− Fk(Uε(tk, ·))||βm

(
k−1∏
`=1

||F`(U(t`, ·))||βm

)(
m∏

`=k+1

||F`(Uε(t`, ·))||βm

)

where we use the convention that product over an empty set gives one. If F1, · · · , Fm ∈
F[C2,v

b,−], then F` are bounded and globally Lipschitz continuous. Hence, the right-hand

side of the above inequality goes to zero. On the other hand, if F1, · · · , Fm ∈ F[C2,v
p,+],

then by Case I we see that

sup
ε∈(0,1)

||F`(Uε(t`, ·))||βm ≤ sup
ε∈(0,1)

||F`(Uε(t`, ·))− F`(U(t`, ·))||βm + ||F`(U(t`, ·))||βm <∞.
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Hence,∣∣∣∣∣
∣∣∣∣∣
m∏
`=1

F`(U(t`, ·))−
m∏
`=1

F`(Uε(t`, ·))

∣∣∣∣∣
∣∣∣∣∣
β

≤ C
m∑
k=1

||Fk(U(tk, ·))− Fk(Uε(tk, ·))||βm ,

which goes to zero as another application of Case I. Therefore,
∏m
`=1 F`(Uε(t`, ·)) con-

verges to
∏m
`=1 F`(U(t`, ·)) in Lβ(Ω) for all β ≥ 1. This completes the proof of Theo-

rems 1.11 and 1.12.

We now prove Corollary 1.13.

Proof of Corollary 1.13. We first consider the case under Assumption 1.14 (i.e., finite
dimensional SDEs and K := {1, . . . , d}). Let

F (z1, . . . , zd) :=

d∏
k=1

1(−∞,ak](zk) and Fε(z1, . . . , zd) :=

d∏
k=1

φε,k(zk),

where φε,k(zk) ∈ C2(R) are non-increasing and non-negative functions such that φε,k(zk)

converges to 1(−∞,ak](zk) as ε goes to 0 for each zk ∈ R. It is easy to see that Fε is
uniformly bounded by some constant, in C2(Rd) and DiDjFε ≥ 0 for i 6= j. On the other
hand, the assumption that γ1(0) = γ2(0) enables us to get

G(1) −G(2) =
1

2

∑
1≤i 6=j≤d

ρ(xi)ρ(xj) [γ1(i− j)− γ2(i− j)]DiDj ,

where G(i) is the infinitesimal generator of U (i) as in the proof of Theorem 1.15. Hence,
following the proof of Theorem 1.15, we get

EFε (U1(t, 1), . . . , U1(t, d)) ≥ EFε (U2(t, 1), . . . , U2(t, d)) .

Therefore, thanks to the bounded convergence theorem, as ε goes to 0, we get

EF (U1(t, 1), . . . , U1(t, d)) ≥ EF (U2(t, 1), . . . , U2(t, d)) ,

which shows (1.27) under Assumption 1.14. Under the assumption in Theorem 1.12 with
γ1(0) = γ2(0), the approximation results from Propositions 4.2, 4.3 and 4.4 complete the
proof of (1.27).

5 Some examples and one application

In all examples below, we always work either under the settings of Theorem 1.5 or
under those of Theorem 1.6, and use u`(t, x), ` = 1, 2, to denote corresponding solutions
to (1.1).

Example 5.1. For n ∈ N \ {0} and c > 0, let g1(x) = (x− c)2n and g2(x) = x2. It is clear
that g1 ∈ C2,v

p (R+;R+)\C2,v
p,±(R+;R+) and g2 ∈ C2,v

p,+(R+;R+). For any t > 0 and x0 ∈ Rd,
denote F`(u(t, ·)) := g`(u(t, x0)), ` = 1, 2. In this case, F1, F2 ∈ F[C2,v

p ] but F1F2 6∈ F[C2,v
p ]

because

1

2

d2

dx2
(x− c)2nx2 = (x− c)2(n−1)

[
(n+ 1)(2n+ 1)x2 − 2c(2n+ 1)x+ c2

]
which is negative for some x > 0 since the quadratic form has two positive solutions by
noticing that ∆ = 4c2n(1 + 2n) > 0. Nevertheless, since F1 ∈ F[C2,v

p ], we can make the
one-time comparison statement

E
(

[u1(t, x0)− c]2n
)
≥ E

(
[u2(t, x0)− c]2n

)
.

This proves (1.8).
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Example 5.2. (Examples in F[C2,v
b,−]) Let g1(x) = 1

(1+x)c with c ≥ 1, g2(x) = log x+a
x+b with

a > b > 0, and g3(x) = e−λx with λ > 0. It is easy to see that for ` = 1, 2, 3,

gi(x) > 0, g′i(x) < 0, and g′′i (x) > 0, ∀x ∈ R+.

Hence, we have

g1, g2, g3 ∈ C2,v
b,−(R+;R+).

Therefore, one can apply either Theorem 1.5 or Theorem 1.6 using these functions to
obtain the multiple-time comparison result in (1.9).

Example 5.3. For any a, b, d ≥ 1 and c ≥ e, denote g1(x) := xb[log(c+x)]a and g2(x) = xd.
We claim that

g1, g2 ∈ C2,v
p,+(R+;R+).

It is trivial for the g2 case. As for the g1 case, it is clear that g1(x) is nonnegative and
strictly increasing for x ≥ 0. We also claim that g′′1 (x) ≥ 0 for x ≥ 0. Indeed, for any
x ≥ 0,

g′′1 (x) ≥ 0⇐⇒ (a− 1)ax2 + ax((2b− 1)x+ 2bc) log(c+ x) + (b− 1)b(c+ x)2 log2(c+ x)≥0

⇐= ax((2b− 1)x+ 2bc) + (b− 1)b(c+ x)2 ≥ 0

⇐⇒ (a(2b− 1) + (b− 1)b)x2 + 2bc(a+ b− 1)x+ (b− 1)bc2 ≥ 0, (5.1)

where in the second step we have used the fact that log(c+ x) ≥ 1 and a, b ≥ 1. Now we
need the following conditions:

(a(2b− 1) + (b− 1)b) ≥ 0

b(a+ b− 1) ≥ 0

(b− 1)b ≥ 0

in order to make (5.1) true for all x ≥ 0. Clearly, these conditions are satisfied for a, b ≥ 1.
On the other hand,

0 ≤ g′1(x) = bxb−1 loga(c+ x) +
axb loga−1(c+ x)

c+ x
≤ (a+ b)xb.

Hence, we have proved that g1 ∈ C2,v
p,+(R+;R+). Therefore, we can apply Theorems 1.5

and 1.6 to have multiple-time comparison statements using either g1 or g2 or both. This
proves (1.7) and also Case (E-4) in Section 1.

Example 5.4. For x ∈ Rm+ , let g(x) = |x|α, where |x| =
√
x21 + · · ·+ x2m and α ≥ 2.

Because

Dig(x) = αxi|x|α−2 and | 5 g(x)| = α|x|α−1

and

DiDjg(x) =

{
α|x|α−4

(
|x|2 + (α− 2)x2i

)
i = j,

α(α− 2)xixj |x|α−4 i 6= j,

we see that g ∈ C2,v
p,+(Rm+ ;R+). Therefore, one can apply either Theorem 1.5 or Theo-

rem 1.6 using these functions to obtain the multiple-time comparison result in (1.10).

Finally, let us give one application of approximation results proved in this paper.
Here we can give a straightforward proof of the weak sample path comparison principle,
which was proved in [7, 24] (for one dimensional case) and in [5] for (d-dimensional
case).
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Theorem 5.5 (Weak sample path comparison principle). Assume that f satisfies Dalang’s
condition (1.6) and the diffusion coefficient ρ is globally Lipschitz continuous, which is
not necessary to vanish at zero. Let u1 and u2 be two solutions to (1.1) with the initial
measures µ1 and µ2 that satisfy (1.5), respectively. If µ1 ≤ µ2, then

P (u1(t, x) ≤ u2(t, x)) = 1 , for all t ≥ 0 and x ∈ Rd . (5.2)

Sketch of the proof. Set v = u1 − u2. Then v satisfies a SHE similar to (1.1) with ρ̃ that
satisfies ρ̃(0) = 0. It suffices to show that v(t, x) ≥ 0 a.s. for all (t, x) fixed. As is shown in
Section 3.4, one can find vδε1,ε′1,ε2

(t, [x]δ) such that

lim
ε′1→0+

lim
ε1→0+

lim
ε2→0+

lim
δ→0+

∣∣∣∣∣∣v(t, x)− vδε1,ε′1,ε2(t, [x]δ)
∣∣∣∣∣∣
p

= 0, ∀p ≥ 2, t > 0, x ∈ Rd.

On the other hand, vδε1,ε′1,ε2
(t, [x]δ) solves the infinite-dimensional SDE (1.21) with ρ

replaced by ρ̃ and with nonnegative and nonvanishing initial data. By Theorem 1.1 of Geiß
and Manthey [16], we know that vδε1,ε′1,ε2

(t, [x]δ) ≥ 0 a.s. Therefore, this nonnegativity
property will be passed to v through the limit.
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